Journal of Physiology and Biochemistry

, Volume 73, Issue 3, pp 417–429 | Cite as

Anti-obesity effects of resveratrol: comparison between animal models and humans

  • Alfredo Fernández-Quintela
  • Christian Carpéné
  • Maialen Fernández
  • Leixuri Aguirre
  • Iñaki Milton-Laskibar
  • José Contreras
  • Maria P. Portillo


The prevalence of obesity has increased rapidly during recent years and has reached epidemic proportions. As a result, the scientific community is interested in active biomolecules which are naturally present in plants and foodstuffs and may be useful in body weight management. In recent years, polyphenols have made up one of the most frequently studied groups among these molecules. Numerous studies have been carried out on animals to analyse the potential anti-obesity effects of resveratrol, a non-flavonoid polyphenol, and a general consensus concerning the body-fat-lowering effect of this compound exists. By contrast, studies in humans have been few so far. Moreover, in these studies, the effectiveness of resveratrol is low. The aims of the present review are to summarize the results reported so far on this topic and to justify the differences observed between animals and humans. It seems that the reduced response to resveratrol in humans cannot be attributed to the use of lower doses in humans because the doses that induce body-fat-lowering effects in rodents are in the same range as those used in human studies. With regard to the experimental period length, treatments were longer in animal studies than in human studies. This can be one of the reasons contributing to the reduced responses observed in humans. Moreover, animals used in the reported studies are young while volunteers participating in human studies are adults, suggesting that resveratrol may be more efficient in young individuals. In addition to differences in the experimental designs, metabolic differences between animals and human cannot be discarded.


Resveratrol Animal models Humans Adipose tissue Body weight 



This research has been supported by MINECO (AGL-2015-65719-R), Fondo Europeo de Desarrollo Regional (FEDER), University of the Basque Country (ELDUNANOTEK UFI11/32), Instituto de Salud Carlos III (CIBERobn) and Basque Government (IT-572-13).


  1. 1.
    Aguirre L, Fernández-Quintela A, Arias N, Portillo MP (2014) Resveratrol: anti-obesity mechanisms of action. Molecules 19:18632–18655CrossRefPubMedGoogle Scholar
  2. 2.
    Alberdi G, Macarulla MT, Portillo MP, Rodríguez VM (2014) Resveratrol does not increase body fat loss induced by energy restriction. J Physiol Biochem 70:639–646Google Scholar
  3. 3.
    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Arias N, Andrés-Lacueva C, Portillo MP (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 8:29CrossRefGoogle Scholar
  4. 4.
    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP (2013) Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 141:1530–1535CrossRefPubMedGoogle Scholar
  5. 5.
    Andrade JM, Paraíso AF, de Oliveira MV, Martins AM, Neto JF, Guimarães AL, de Paula AM, Qureshi M, Santos SH (2014) Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30:915–919CrossRefPubMedGoogle Scholar
  6. 6.
    Arias N, Macarulla MT, Aguirre L, Milton I, Portillo MP (2016) The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. Eur J Nutr 55:341–348CrossRefPubMedGoogle Scholar
  7. 7.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Borriello A, Cucciolla V, Della Ragione F, Galletti P (2010) Dietary polyphenols: focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis 20:618–625CrossRefPubMedGoogle Scholar
  9. 9.
    Burkon A, Somoza V (2008) Quantification of free and protein-bound trans-resveratrol metabolites and identification of trans-resveratrol-C/O-conjugated diglucuronides—two novel resveratrol metabolites in human plasma. Mol Nutr Food Res 52:549–557CrossRefPubMedGoogle Scholar
  10. 10.
    Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50:3337–3340CrossRefPubMedGoogle Scholar
  11. 11.
    Chachay VS, Macdonald GA, Martin JH, Whitehead JP, O’Moore-Sullivan TM, Lee P, Franklin M, Klein K, Taylor PJ, Ferguson M, Coombes JS, Thomas GP, Cowin GJ, Kirkpatrick CM, Prins JB, Hickman IJ (2014) Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 12:2092–2103.e2096CrossRefPubMedGoogle Scholar
  12. 12.
    Chang CC, Lin KY, Peng KY, Day YJ, Hung LM (2016) Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocr J 63:169–178CrossRefPubMedGoogle Scholar
  13. 13.
    Cho SJ, Jung UJ, Choi MS (2012) Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr 108:2166–2175CrossRefPubMedGoogle Scholar
  14. 14.
    Crandall JP, Oram V, Trandafirescu G, Reid M, Kishore P, Hawkins M, Cohen HW, Barzilai N (2012) Pilot study of resveratrol in older adults with impaired glucose tolerance. J Gerontol A Biol Sci Med Sci 67:1307–1312CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dal-Pan A, Blanc S, Aujard F (2010) Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol 10:11CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gu H, Li K, Li X, Yu X, Wang W, Ding L, Liu L (2016) Oral resveratrol prevents osteoarthritis progression in C57BL/6J mice fed a high-fat diet. Nutrients 8:233CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gómez-Zorita S, Fernández-Quintela A, Lasa A, Hijona E, Bujanda L, Portillo MP (2013) Effects of resveratrol on obesity-related inflammation markers in adipose tissue of genetically obese rats. Nutrition 29:1374–1380CrossRefPubMedGoogle Scholar
  18. 18.
    James PT, Rigby N, Leach R, Force IOT (2004) The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil 11:3–8CrossRefPubMedGoogle Scholar
  19. 19.
    Jeon SM, Lee SA, Choi MS (2014) Antiobesity and vasoprotective effects of resveratrol in apoE-deficient mice. J Med Food 17:310–316CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim KH, Park Y (2011) Food components with anti-obesity effect. Annu Rev Food Sci Technol 2:237–257CrossRefPubMedGoogle Scholar
  21. 21.
    Kim S, Jin Y, Choi Y, Park T (2011) Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 81:1343–1351CrossRefPubMedGoogle Scholar
  22. 22.
    Konings E, Timmers S, Boekschoten MV, Goossens GH, Jocken JW, Afman LA, Müller M, Schrauwen P, Mariman EC, Blaak EE (2014) The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men. Int J Obes 38:470–473Google Scholar
  23. 23.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122CrossRefPubMedGoogle Scholar
  24. 24.
    Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Sasso GL, Moschetta A, Schibler U (2009) REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 7:e1000181CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leiherer A, Mündlein A, Drexel H (2013) Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc Pharmacol 58:3–20CrossRefGoogle Scholar
  26. 26.
    Macarulla MT, Alberdi G, Gómez S, Tueros I, Bald C, Rodríguez VM, Martínez JA, Portillo MP (2009) Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 65:369–376CrossRefPubMedGoogle Scholar
  27. 27.
    Mendes KL, de Pinho L, Andrade JM, Paraíso AF, Lula JF, Macedo SM, Feltenberger JD, Guimarães AL, de Paula AM, Santos SH (2016) Distinct metabolic effects of resveratrol on lipogenesis markers in mice adipose tissue treated with high-polyunsaturated fat and high-protein diets. Life Sci 153:66–73CrossRefPubMedGoogle Scholar
  28. 28.
    Miranda J, Portillo MP, Madrid JA, Arias N, Macarulla MT, Garaulet M (2013) Effects of resveratrol on changes induced by high-fat feeding on clock genes in rats. Br J Nutr 110:1421–1428CrossRefPubMedGoogle Scholar
  29. 29.
    Méndez-del Villar M, González-Ortiz M, Martínez-Abundis E, Pérez-Rubio KG, Lizárraga-Valdez R (2014) Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab Syndr Relat Disord 12:497–501CrossRefPubMedGoogle Scholar
  30. 30.
    Nagao K, Jinnouchi T, Kai S, Yanagita T (2013) Effect of dietary resveratrol on the metabolic profile of nutrients in obese OLETF rats. Lipids Health Dis 12:8CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohara K, Kusano K, Kitao S, Yanai T, Takata R, Kanauchi O (2015) ε-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochem Biophys Res Commun 468:877–882CrossRefPubMedGoogle Scholar
  32. 32.
    Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stødkilde-Jørgensen H, Møller N, Jessen N, Pedersen SB, Jørgensen JO (2013) High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 62:1186–1195CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Qiao Y, Sun J, Xia S, Tang X, Shi Y, Le G (2014) Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food Funct 5:1241–1249CrossRefPubMedGoogle Scholar
  34. 34.
    Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRefPubMedGoogle Scholar
  35. 35.
    Rivera L, Morón R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063CrossRefPubMedGoogle Scholar
  36. 36.
    Szkudelska K, Nogowski L, Szkudelski T (2009) Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 113:17–24CrossRefPubMedGoogle Scholar
  37. 37.
    Szkudelska K, Szkudelski T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635:1–8CrossRefPubMedGoogle Scholar
  38. 38.
    Tauriainen E, Luostarinen M, Martonen E, Finckenberg P, Kovalainen M, Huotari A, Herzig KH, Lecklin A, Mervaala E (2011) Distinct effects of calorie restriction and resveratrol on diet-induced obesity and fatty liver formation. J Nutr Metab 2011:525094CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622Google Scholar
  40. 40.
    Voigt A, Ribot J, Sabater AG, Palou A, Bonet ML, Klaus S (2015) Identification of Mest/Peg1 gene expression as a predictive biomarker of adipose tissue expansion sensitive to dietary anti-obesity interventions. Genes Nutr 10Google Scholar
  41. 41.
    WHO (2014) Obesity and overweight. In,
  42. 42.
    Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S, Schechtman KB, Gu C, Kunz I, Rossi Fanelli F, Patterson BW, Klein S (2012) Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 16:658–664CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© University of Navarra 2017

Authors and Affiliations

  • Alfredo Fernández-Quintela
    • 1
    • 2
  • Christian Carpéné
    • 3
  • Maialen Fernández
    • 1
  • Leixuri Aguirre
    • 1
    • 2
  • Iñaki Milton-Laskibar
    • 1
  • José Contreras
    • 4
  • Maria P. Portillo
    • 1
    • 2
  1. 1.Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research CenterUniversity of the Basque Country (UPV/EHU)VitoriaSpain
  2. 2.CIBERobn Physiopathology of Obesity and NutritionInstituto de Salud Carlos III (ISCIII)MadridSpain
  3. 3.INSERM U1048, Institute of Metabolic and Cardiovascular Diseases (I2MC)National Institute of Health and Medical Research (INSERM U1048) and University Paul Sabatier (I2MC-UPS)ToulouseFrance
  4. 4.Endocrinology and Nutrition ServiceInfanta Luisa HospitalSevillaSpain

Personalised recommendations