Advertisement

Journal of Physiology and Biochemistry

, Volume 71, Issue 4, pp 743–751 | Cite as

Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats

  • Nadia Mushtaq
  • Roberta Schmatz
  • Mushtaq Ahmed
  • Luciane Belmonte Pereira
  • Pauline da Costa
  • Karine Paula Reichert
  • Diéssica Dalenogare
  • Luana Paula Pelinson
  • Juliano Marchi Vieira
  • Naiara Stefanello
  • Lizielle Souza de Oliveira
  • Nadia Mulinacci
  • Maria Bellumori
  • Vera Maria Morsch
  • Maria Rosa Schetinger
Original Paper

Abstract

In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.

Keywords

Rosmarinic acid Oxidative stress Strepotozotocin 

Notes

Acknowledgments

We wish to thank the Academy of Sciences for the Developing World (TWAS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

References

  1. 1.
    Aslan M, Orhan N, Orhan DD, Erun F (2010) Hypoglycemic activity and antioxidant potential of some medicinal plants traditional used in Turkey for diabetes. J Ethnopharmacol 128(2):384–389CrossRefPubMedGoogle Scholar
  2. 2.
    Bradford MM (1976) A rapid and sensitive method for quantification of microgramquantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  3. 3.
    Dubois M, Bailly F, Mbemba G, Mouscadet JF, Debyser Z, Witvrouw M, Cotelle P (2008) Reaction of rosmarinic acid with nitrite ions in acidic conditions: discovery of nitro- and dinitrorosmarinic acids as new anti-HIV-1 agents. J Med Chem 51(8):2575–2579CrossRefPubMedGoogle Scholar
  4. 4.
    Ellman GL (1959) Tissue Sulfhydryl Groups. Arch Bioch Biophs 70–7Google Scholar
  5. 5.
    Exarchou V, Nenadis N, Tsimidou M, Gerothanassis IP, Troganis A, Boskou D (2002) Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J Agric Food Chem 50(19):5294–5299CrossRefPubMedGoogle Scholar
  6. 6.
    Farina M, Folmer V, Bolzan RC, Andrade LH, Zeni G, Braga AL, Rocha JBT (2002) Reaction of diphenyldiselenide with hydrogen peroxide and inhibition of δ-aminolevulinate dehydratase from rat liver and cucumber leaves. Braz J Med Biol Res 35(6):623–631CrossRefPubMedGoogle Scholar
  7. 7.
    Fernandez-Cuartero B, Rebollar JL, Batle A, Enriquez de Salamanca R (1999) Delta aminolevulinato dehydratase (ALA-D) activity in human and Experimental diabetes mellitus. Int J Biochem Cell Biol 479–88Google Scholar
  8. 8.
    Folmer V, Soares JCM, Rocha JBT (2002) Oxidative stress in mice is dependent on the free glucose content of the diet. Int J Biochem Cell Biol 34(10):1279–1285CrossRefPubMedGoogle Scholar
  9. 9.
    Ghasemzadeh A, Khaki A, Farzadi L, Khaki AA, Marjani M, Ashteani H, Hamdi B, Ghadamkheir E, Naeimikararoudi M, Oulad-sahebmadarek E (2011) Effect of rosmarinic acid on estrogen, FSH and LH in female diabetic rats. Afr J Pharm Pharmacol 5(11):1427–1431CrossRefGoogle Scholar
  10. 10.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Hossain MB, Brunton NP, Barry-Ryan C, Martin-Diana AD, Wilkinson M (2008) Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. Rasayan J Chem 1(4):751–756Google Scholar
  12. 12.
    Jacques-Silva MC, Nogueira CW, Broch LC, Flores EMM, Rocha JBT (2001) Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. Pharmacol Toxicol 88(3):119–125CrossRefPubMedGoogle Scholar
  13. 13.
    Kade IJ (2009) Effect of oral administration of diphenyldiselenide on antioxidant status, and activity of delta aminolevulinic acid dehydratase and isoforms of lactate dehydrogenase, in streptozotocin-induced diabetic rats. Cell Biol Toxicol 25:415–424CrossRefPubMedGoogle Scholar
  14. 14.
    Kesavulu MM, Giri R, Kameswara RB, Apparao C (2000) Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 26:387–392PubMedGoogle Scholar
  15. 15.
    Kristinová V, Mozuraityte R, Storro I, Rustad T (2009) Antioxidant activity of phenolic acids in lipid oxidation catalyzed by different prooxidants. J Agric Food Chem 57:10377–10385CrossRefPubMedGoogle Scholar
  16. 16.
    Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226CrossRefPubMedGoogle Scholar
  17. 17.
    Maritimin AC, Sanders RA, Watkins JB (2003) Diabetes oxidative stress and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38CrossRefGoogle Scholar
  18. 18.
    Mclennan SV, Heffernen S, Wright L (1991) Changes in hepatic glutathione metabolism in diabetes. Diabetes 40(3):344–348CrossRefPubMedGoogle Scholar
  19. 19.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 10:3170–3175Google Scholar
  20. 20.
    Moskaug JO, Carlsen H, Myhrstad MC, Blomhoff R (2005) Polyphenols and glutathione synthesis regulation. Am J Clin Nutr 81(1):277S–283SPubMedGoogle Scholar
  21. 21.
    Mullarkey CJ, Edelstein D, Brownle L (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Comm 173:932–939CrossRefPubMedGoogle Scholar
  22. 22.
    Mushtaq N, Schmatz R, Pereira LB, Ahmad M, Stefanello N, Vieira JM, Abdalla F, Rodrigues MV, Baldissarelli J, Pelinson LP, Dalenogare DP, Reichert KP, Dutra EM, Mulinacci N, Innocenti M, Bellumori M, Morsch VM, Schetinger MR (2014) Rosmarinic acid prevents lipid peroxidation and increase in acetylcholinesterase activity in brain of streptozotocin-induced diabetic rats. Cell Biochem Funct 32:287–293CrossRefPubMedGoogle Scholar
  23. 23.
    Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 2:474–478CrossRefGoogle Scholar
  24. 24.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Ana Biochem 95(2):351–358CrossRefGoogle Scholar
  25. 25.
    Osakabe N, Yasuda A, Natsume M, Yoshikawa T (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25(4):549–557CrossRefPubMedGoogle Scholar
  26. 26.
    Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62(2):121–125CrossRefPubMedGoogle Scholar
  27. 27.
    Prince PSM, Menon VP (2000) Antioxidant action of Tinospora cordifolia root extract in alloxan diabetic rats. Phytother Res 15(3):213–218CrossRefGoogle Scholar
  28. 28.
    Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 5:567–575CrossRefGoogle Scholar
  29. 29.
    Ramulu J, Puchchakayal G (2012) Hypoglycemic and antidiabetic activity of flavonoids: boswellic acid, ellagic acid, quercetin, rutin on streptozotocin nicotinamide induced type 2 diabetic rats. Int J Pharm Pharm Sci 4(2):251–259Google Scholar
  30. 30.
    Rocha ME, Dutra F, Bandy B, Baldini RL, Gomes SL, Faljoni-Alário A, Liria CW, Miranda MT, Bechara EJ (2003) Oxidative damage to ferritin by 5- aminolevulinic acid. Arch Biochem Biophys 2:349–356CrossRefGoogle Scholar
  31. 31.
    Rosen P, Nawroth PP, King G, Moller G, Tritschrev HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complication. Diabetes Metab Res Rev 17:189–212CrossRefPubMedGoogle Scholar
  32. 32.
    Sassa S (1998) ALA-D porphyria. Sem Liver Dis 18:95–101CrossRefGoogle Scholar
  33. 33.
    Scarpati ML, Oriente G (1958) Isolamente e constituzione dell'acido rosmarinico (dalRosmarinus off). Ric Sci 1958(28):2329–2333Google Scholar
  34. 34.
    Schmatz R, Perreira LB, Stefanello N, Mazzanti C, Spanevello R, Gutierres J, Bagatini M, Martins CC, Abdalla FH, Serres JDS, Zanini D, Vieira JM, Cardoso AM, Schetinger MR, Morsch VM (2012) Effects of resveratrol on biomarkers of oxidative stress and on the activity of delta aminolevulinic acid dehydratase in liver and kidney of streptozotocin-induced diabetic rats. Biochimie 94(2):374–383CrossRefPubMedGoogle Scholar
  35. 35.
    Shekarchi M, Hajimehdipoor H, Saeidnia S, Gohari AR, PiraliHamedani M (2012) Comparative study of rosmarinic acid content in some plants of Labiatae family. Phcog Mag 8(29):37–41PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Silva JP, Gomes AC, Coutinho OP (2008) Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. Eur J Pharmacol 601(1–3):50–60CrossRefPubMedGoogle Scholar
  37. 37.
    Soobratee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579(1–2):200–213CrossRefGoogle Scholar
  38. 38.
    Sotnikova R, Okruhlicova L, Vlkovicova J, Navarova J, Gajdacova B, Pivackova L, Fialova S, Krenek P (2013) Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta. J Pharm Pharmacol 65(5):713–2352CrossRefPubMedGoogle Scholar
  39. 39.
    Wojdylo A, Oszmiański J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105(3):940–949CrossRefGoogle Scholar
  40. 40.
    Yanardag R, Tunali S (2006) Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats. Mol Cel Biochem 286(1):153–159CrossRefGoogle Scholar

Copyright information

© University of Navarra 2015

Authors and Affiliations

  • Nadia Mushtaq
    • 1
  • Roberta Schmatz
    • 1
    • 4
  • Mushtaq Ahmed
    • 2
  • Luciane Belmonte Pereira
    • 1
  • Pauline da Costa
    • 1
  • Karine Paula Reichert
    • 1
  • Diéssica Dalenogare
    • 1
  • Luana Paula Pelinson
    • 1
  • Juliano Marchi Vieira
    • 1
  • Naiara Stefanello
    • 1
  • Lizielle Souza de Oliveira
    • 1
  • Nadia Mulinacci
    • 3
  • Maria Bellumori
    • 3
  • Vera Maria Morsch
    • 1
  • Maria Rosa Schetinger
    • 1
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus UniversitárioSanta MariaBrazil
  2. 2.Department of BiotechnologyUniversity of Science and TechnologyBannuPakistan
  3. 3.Department of NEUROFARBAUniversity of FlorenceSesto F.no (Firenze)Italy
  4. 4.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, IFRS-Câmpus IbirubáIbirubáBrazil

Personalised recommendations