Skip to main content

Advertisement

Log in

Mutual enhancement between high-mobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The expression of the proinflammatory cytokine high-mobility group box-1 (HMGB1) is upregulated in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy (PDR) and in the diabetic retina. We hypothesized that a novel mechanism exists where HMGB1 and NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are mutually enhanced in the diabetic retina, which may be a novel mechanism for promoting upregulation of retinal apoptotic markers induced by diabetes. Vitreous samples from 48 PDR and 34 nondiabetic patients, retinas from 1-month diabetic rats and from normal rats intravitreally injected with HMGB1 and human retinal microvascular endothelial cells (HRMEC) stimulated with HMGB1 were studied by enzyme-linked immunosorbent and spectrophotometric assays, Western blot analysis, RT-PCR, and immunofluorescence. We also studied the effect of the HMGB1 inhibitor glycyrrhizin and apocynin on diabetes-induced biochemical changes in the retinas of rats (n = 5–7 in each groups). HMGB1 and the oxidative stress marker protein carbonyl content levels in the vitreous fluid from PDR patients were significantly higher than in controls (p = 0.021; p = 0.005, respectively). There was a significant positive correlation between vitreous fluid levels of HMGB1 and the levels of protein carbonyl content (r = 0.62, p = 0.001). HMGB1 enhanced interleukin-1β, ROS, Nox2, poly (ADP-ribose) polymerase (PARP)-1, and cleaved caspase-3 production by HRMEC. Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of ROS, Nox2, PARP-1, and cleaved caspase-3 in the retina. Constant glycyrrhizin and apocynin intake from onset of diabetes did not affect the metabolic status of the diabetic rats, but restored these increased mediators to control values. The results of this study suggest that there is a mutual enhancement between HMGB1 and Nox-derived ROS in the diabetic retina, which may promote diabetes-induced upregulation of retinal apoptotic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abu El-Asrar AM, Siddiquei MM, Nawaz MI, Geboes K, Mohammad G (2014) The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediators Inflamm 2014:746415. doi:10.1155/2014/746415

  2. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010) NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30:2967–2978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Al-Shabrawey M, Rojas M, Sanders T, Behzadian A, El-Remessy A, Bartoli M et al (2008) Role of NADPH oxidase in retinal vascular inflammation. Invest Ophthalmol Vis Sci 49:3239–3244

    Article  PubMed Central  PubMed  Google Scholar 

  4. Altomare E, Grattagliano I, Vendemaile G, Micelli-Ferrari T, Signorile A, Cardia L (1997) Oxidative protein damage in human diabetic eye: evidence of a retinal participation. Eur J Clin Invest 27:141–147

    Article  CAS  PubMed  Google Scholar 

  5. Barber A (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    Article  CAS  PubMed  Google Scholar 

  6. Burdon RH (1996) Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 24:1028–1032

    Article  CAS  PubMed  Google Scholar 

  7. Cakatay U (2005) Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab 31:551–557

    Article  CAS  PubMed  Google Scholar 

  8. Cederlund M, Ghosh F, Arnér K, Andréasson S, Akerström B (2013) Vitreous levels of oxidative stress biomarkers and the radical-scavenger α1-microglobulin/A1M in human rhegmatogenous retinal detachment. Graefes Arch Clin Exp Ophthalmol 251:725–732

    Article  CAS  PubMed  Google Scholar 

  9. Daffu G, del Poz CH, O’Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM (2013) Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 14:19891–19910

    Article  PubMed Central  PubMed  Google Scholar 

  10. El-Asrar AM, Missotten L, Geboes K (2011) Expression of high-mobility groups box-1/receptor for advanced glycation end products/osteopontin/early growth response-1 pathway in proliferative vitreoretinal epiretinal membranes. Mol Vis 17:508–518

    PubMed Central  PubMed  Google Scholar 

  11. El-Asrar AM, Nawaz MI, Kangave D, Geboes K, Ola MS, Ahmad S et al (2011) High-mobility group box-1 and biomarkers of inflammation in the vitreous from patients with proliferative diabetic retinopathy. Mol Vis 17:1829–1838

    PubMed Central  PubMed  Google Scholar 

  12. Ellis EA, Grant MB, Murray FT, Wachowski MB, Guberski DL, Kubilis PS et al (1998) Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Radic Biol Med 24:111–120

    Article  CAS  PubMed  Google Scholar 

  13. Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y et al (2007) Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol 178:6573–6580

    Article  CAS  PubMed  Google Scholar 

  14. Gao L, Mann GE (2009) Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 82:9–20

    Article  CAS  PubMed  Google Scholar 

  15. Gong G, Xiang L, Yuan L, Hu L, Wu W, Cai L et al. (2014) Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS One 9:e89450. doi:10.1371/journal.pone.0089450

  16. Heumüller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schröder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217

    Article  PubMed  Google Scholar 

  17. Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    Article  CAS  PubMed  Google Scholar 

  18. Kim SW, Jin Y, Shin JH, Kim ID, Lee HK, Park S et al (2012) Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiol Dis 46:147–156

    Article  CAS  PubMed  Google Scholar 

  19. Kleniewska P, Piechota A, Skibska B, Goraca A (2012) The NADPH oxidase family and its inhibitors. Arch Immunol Ther Exp (Warsz) 60:277–294

    Article  CAS  Google Scholar 

  20. Kowluru RA, Atasi L, Ho YS (2006) Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 47:1594–1599

    Article  PubMed  Google Scholar 

  21. Kowluru RA, Koppolu P (2002) Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radic Res 36:993–999

    Article  CAS  PubMed  Google Scholar 

  22. Kowluru RA, Kowluru A, Veluthakal R, Mohammad G, Syed I, Santos JM et al (2014) TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia 57:1047–1056

    Article  CAS  PubMed  Google Scholar 

  23. Krynetskaia N, Xie H, Vucetic S, Obradovic Z, Krynetskiy E (2008) High mobility group protein B1 is an activator of apoptotic response to antimetabolite drugs. Mol Pharmacol 73:260–269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Loukovaara S, Koivunen P, Inglés M, Escobar J, Vento M, Andersson S (2014) Elevated protein carbonyl and HIF-1α levels in eyes with proliferative diabetic retinopathy. Acta Ophthalmol 92:323–327

    Article  CAS  PubMed  Google Scholar 

  25. Mohammad G, Siddiquei MM, Abu El-Asrar AM (2013) Poly (ADP-ribose) polymerase mediates diabetes-induced retinal neuropathy. Mediators Inflamm 2013:510451

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mohammad G, Siddiquei MM, Othman A, Al-Shabrawey M, Abu El-Asrar AM (2013) High-mobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina. Exp Eye Res 107:101–109

    Article  CAS  PubMed  Google Scholar 

  27. Mollica L, De Marchis F, Spitaleri A, Dallacosta C, Pennacchini D, Zamai M et al (2007) Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 14:431–441

    Article  CAS  PubMed  Google Scholar 

  28. Ohnishi M, Katsuki H, Fukutomi C, Takahashi M, Motomura M, Fukunaga M et al (2011) HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology 61:975–980

    Article  CAS  PubMed  Google Scholar 

  29. Okuma Y, Liu K, Wake H, Liu R, Nishimura Y, Hui Z et al (2014) Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction. Neuropharmacology 85:18–26

    Article  CAS  PubMed  Google Scholar 

  30. Patel P, Zheng G, Bosland MC, Kajdacsy-Balla A, Munirathinam G (2012)The role of high mobility group box 1 (HMGB1) in prostate carcinogenesis. Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; Chicago, Illinois. Philadelphia (PA): AACR Abstract nr (535)

  31. Piwowar A, Knapic-Kordecka M, Warwas M (2009) Markers of oxidative protein damage in plasma and urine of type 2 diabetic patients. Br J Biomed Sci 66(8):194–199

    CAS  PubMed  Google Scholar 

  32. Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K et al (2006) Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med 203:1637–1642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Rinnerthaler M, Büttner S, Laun P, Heeren G, Felder TK, Klinger H et al (2012) Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygenspecies generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci U S A 109:8658–8663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rojas M, Zhang W, Xu Z, Lemtalsi T, Chandler P, Toque HA et al. (2013) Requirement of NOX2 expression in both retina and bone marrow for diabetes-induced retinal vascular injury. PLoS ONE 8:e84357. doi:10.1371/journal.pone.0084357

  36. Santos AR, Dvoriantchikova G1, Li Y1, Mohammad G, Abu El-Asrar AM, Wen R et al. (2014) Cellular mechanisms of high mobility group 1 (HMGB-1) protein action in the diabetic retinopathy. PLoS One 9:e87574. doi:10.1371/journal.pone.0087574

  37. Santos JM, Mohammad G, Zhong Q, Kowluru RA (2011) Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol 12:352–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K et al (2010) Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53:971–979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  40. Sil R, Ray D, Chakraborti AS (2013) Glycyrrhizin ameliorates insulin resistance, hyperglycemia, dyslipidemia and oxidative stress in fructose-induced metabolic syndrome-X in rat model. Indian J Exp Biol 51:129–138

    CAS  PubMed  Google Scholar 

  41. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  42. Tang D, Kang R, Zen HJ 3rd, Lotze MT (2011) High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal 14:1315–1335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17:189–201

    Article  CAS  PubMed  Google Scholar 

  44. Wu Y, Zhang K, Zhao L, Guo J, Hu X, Chen Z (2013) Increased serum HMGB1 is related to oxidative stress in patients with atrial fibrillation. J Int Med Res 41:1796–1802

    Article  CAS  PubMed  Google Scholar 

  45. Zheng L, Szabó C, Kern TS (2004) Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes 53:2960–2967

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Connie B. Unisa-Marfil for secretarial work. This project was funded by National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award number (12-MED2604-02) and Dr. Nasser Al-Rashid Research Chair in Ophthalmology (Abu El-Asrar AM).

Declaration of interest and financial disclosure

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Mohammad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, G., Alam, K., Nawaz, M.I. et al. Mutual enhancement between high-mobility group box-1 and NADPH oxidase-derived reactive oxygen species mediates diabetes-induced upregulation of retinal apoptotic markers. J Physiol Biochem 71, 359–372 (2015). https://doi.org/10.1007/s13105-015-0416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0416-x

Keywords

Navigation