Advertisement

Journal of Physiology and Biochemistry

, Volume 71, Issue 1, pp 155–164 | Cite as

Role of Krüppel-like factors in cancer stem cells

  • Yueling Zhang
  • Jin Hao
  • Yingcheng Zheng
  • Dian Jing
  • Yu Shen
  • Jun Wang
  • Zhihe Zhao
Mini Review

Abstract

Cancer stem cells (CSCs), or cancer cells with stem cell properties, are a rare population of tumor bulk and are recognized to be responsible for cancer recurrence, drug resistance, and metastasis. However, the molecular mechanisms of how to regulate the differentiation and self-renewing of CSCs are poorly understood. Krüppel-like factors (KLFs) are essential DNA-binding transcriptional regulators with diverse functions in various cellular processes, including differentiation, proliferation, inflammation, migration, and pluripotency. Recent progress has highlighted the significance of KLFs in tumor progression and CSCs. The regulatory functions of KLFs in the development of cancer and CSCs have become a burgeoning area of intense research. In this review, we summarize the current understanding and progress of the transcriptional regulation of KLFs in CSCs and discuss the functional implications of targeting CSCs by KLFs for cancer therapeutics.

Keywords

Krüppel-like factors Cancer Cancer therapy Cancer stem cells 

Notes

Acknowledgments

This work was supported by grants from Science and Technology Fund of Sichuan Province no. 2011SZ0096 and National Natural Science Foundation of China nos. 31470904 and 81030034.

Conflict of interest

The authors do not have any conflict of interest to declare.

References

  1. 1.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988PubMedCentralPubMedGoogle Scholar
  2. 2.
    Baccelli I, Trumpp A (2012) The evolving concept of cancer and metastasis stem cells. J Cell Biol 198:281–293PubMedCentralPubMedGoogle Scholar
  3. 3.
    Bin Z, Ke-Yi L, Wei-Feng Z et al (2013) Downregulation of KLF8 expression by shRNA induces inhibition of cell proliferation in CAL27 human oral cancer cells. Med Oral Patol Oral Cir Bucal 18:e591–e596PubMedCentralPubMedGoogle Scholar
  4. 4.
    Cabarcas SM, Mathews LA, Farrar WL (2011) The cancer stem cell niche—there goes the neighborhood. Int J Cancer 129:2315–2327PubMedGoogle Scholar
  5. 5.
    Cai XD, Zhou YB, Huang LX et al (2012) Reduced expression of Kruppel-like factor 17 is related to tumor growth and poor prognosis in lung adenocarcinoma. Biochem Biophys Res Commun 418:67–73PubMedGoogle Scholar
  6. 6.
    Camacho-Vanegas O, Till J, Miranda-Lorenzo I, Ozturk B, Camacho SC, Martignetti JA (2013) Shaking the family tree: identification of novel and biologically active alternatively spliced isoforms across the KLF family of transcription factors. FASEB J 27:432–436PubMedGoogle Scholar
  7. 7.
    Chakroborty D, Sarkar C, Yu H et al (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci U S A 108:20730–20735PubMedCentralPubMedGoogle Scholar
  8. 8.
    Chang VH, Chu PY, Peng SL et al (2012) Kruppel-like factor 10 expression as a prognostic indicator for pancreatic adenocarcinoma. Am J Pathol 181:423–430PubMedGoogle Scholar
  9. 9.
    Chen C, Benjamin MS, Sun X et al (2006) KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer 118:1346–1355PubMedGoogle Scholar
  10. 10.
    Chen C, Bhalala HV, Vessella RL, Dong JT (2003) KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate 55:81–88PubMedGoogle Scholar
  11. 11.
    Chen H, Chen L, Sun L, Zhen H, Li X, Zhang Q (2011) A small interfering RNA targeting the KLF6 splice variant, KLF6-SV1, as gene therapy for gastric cancer. Gastric Cancer 14:339–352PubMedGoogle Scholar
  12. 12.
    Chen K, Chen Y, Zhu XD et al (2012) Expression and significance of Kruppel-like factor 6 gene in osteosarcoma. Int Orthop 36:2107–2111PubMedCentralPubMedGoogle Scholar
  13. 13.
    Chen J, Li Y, Yu TS et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526PubMedCentralPubMedGoogle Scholar
  14. 14.
    Chen CJ, Lin SE, Lin YM, Lin SH, Chen DR, Chen CL (2012) Association of expression of Kruppel-like factor 4 and Kruppel-like factor 5 with the clinical manifestations of breast cancer. Pathol Oncol Res 18:161–168PubMedGoogle Scholar
  15. 15.
    Chiam K, Ryan NK, Ricciardelli C et al (2013) Characterization of the prostate cancer susceptibility gene KLF6 in human and mouse prostate cancers. Prostate 73:182–193PubMedGoogle Scholar
  16. 16.
    Cho YG, Choi BJ, Kim CJ et al (2006) Genetic alterations of the KLF6 gene in colorectal cancers. APMIS 114:458–464PubMedGoogle Scholar
  17. 17.
    Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedGoogle Scholar
  18. 18.
    Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedGoogle Scholar
  19. 19.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284PubMedGoogle Scholar
  20. 20.
    Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469PubMedCentralPubMedGoogle Scholar
  21. 21.
    Diakiw SM, Perugini M, Kok CH et al (2013) Methylation of KLF5 contributes to reduced expression in acute myeloid leukaemia and is associated with poor overall survival. Br J Haematol 161:884–888PubMedGoogle Scholar
  22. 22.
    Dong P, Kaneuchi M, Xiong Y et al (2013) Identification of KLF17 as a novel epithelial to mesenchymal transition inducer via direct activation of TWIST1 in endometrioid endometrial cancer. Carcinogenesis 5:760–768Google Scholar
  23. 23.
    Dong Z, Yang L, Lai D (2013) KLF5 strengthens drug resistance of ovarian cancer stem-like cells by regulating survivin expression. Cell Prolif 46:425–435PubMedGoogle Scholar
  24. 24.
    Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012) Defining the mode of tumour growth by clonal analysis. Nature 488:527–530PubMedGoogle Scholar
  25. 25.
    Faryna M, Konermann C, Aulmann S et al (2012) Genome-wide methylation screen in low-grade breast cancer identifies novel epigenetically altered genes as potential biomarkers for tumor diagnosis. FASEB J 26:4937–4950PubMedGoogle Scholar
  26. 26.
    Fernandez-Zapico ME, Mladek A, Ellenrieder V, Folch-Puy E, Miller L, Urrutia R (2003) An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J 22:4748–4758PubMedCentralPubMedGoogle Scholar
  27. 27.
    Fu WJ, Li JC, Wu XY et al (2010) Small interference RNA targeting Kruppel-like factor 8 inhibits the renal carcinoma 786-0 cells growth in vitro and in vivo. J Cancer Res Clin Oncol 136:1255–1265PubMedGoogle Scholar
  28. 28.
    Funnell AP, Mak KS, Twine NA et al (2013) Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. Mol Cell Biol 33:2976–2987PubMedCentralPubMedGoogle Scholar
  29. 29.
    Gehrau RC, D’Astolfo DS, Dumur CI, Bocco JL, Koritschoner NP (2010) Nuclear expression of KLF6 tumor suppressor factor is highly associated with overexpression of ERBB2 oncoprotein in ductal breast carcinomas. PLoS One 5:e8929PubMedCentralPubMedGoogle Scholar
  30. 30.
    Giefing M, Wierzbicka M, Rydzanicz M, Cegla R, Kujawski M, Szyfter K (2008) Chromosomal gains and losses indicate oncogene and tumor suppressor gene candidates in salivary gland tumors. Neoplasma 55:55–60PubMedGoogle Scholar
  31. 31.
    Gilbertson RJ, Graham TA (2012) Cancer: resolving the stem-cell debate. Nature 488:462–463PubMedGoogle Scholar
  32. 32.
    Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567PubMedCentralPubMedGoogle Scholar
  33. 33.
    Gumireddy K, Li A, Gimotty PA et al (2009) KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol 11:1297–1304PubMedCentralPubMedGoogle Scholar
  34. 34.
    Hao J, Zhang Y, Deng M et al (2014) MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer 135:1019–1027PubMedGoogle Scholar
  35. 35.
    Hao J, Zhao S, Zhang Y et al (2014) Emerging role of microRNAs in cancer and cancer stem cells. J Cell Biochem 115:605–610PubMedGoogle Scholar
  36. 36.
    Hart LS, El-Deiry WS (2008) Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. J Clin Oncol 26:2901–2910PubMedGoogle Scholar
  37. 37.
    Hartel M, Narla G, Wente MN et al (2008) Increased alternative splicing of the KLF6 tumour suppressor gene correlates with prognosis and tumour grade in patients with pancreatic cancer. Eur J Cancer 44:1895–1903PubMedGoogle Scholar
  38. 38.
    He HJ, Gu XF, Xu WH, Yang DJ, Wang XM, Su Y (2013) Kruppel-like factor 8 is a novel androgen receptor co-activator in human prostate cancer. Acta Pharmacol Sin 34:282–288PubMedCentralPubMedGoogle Scholar
  39. 39.
    Henson BJ, Gollin SM (2010) Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res 128:192–198PubMedCentralPubMedGoogle Scholar
  40. 40.
    Ho A, Fusenig N (2011) Cancer stem cells: a promising concept and therapeutic challenge. Int J Cancer 129:2309PubMedGoogle Scholar
  41. 41.
    Hoffmeyer K, Raggioli A, Rudloff S et al (2012) Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336:1549–1554PubMedGoogle Scholar
  42. 42.
    Hu R, Zuo Y, Zuo L et al (2011) KLF4 expression correlates with the degree of differentiation in colorectal cancer. Gut Liver 5:154–159PubMedCentralPubMedGoogle Scholar
  43. 43.
    Huang D, Gao Q, Guo L et al (2009) Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines. Stem Cells Dev 18:465–473PubMedGoogle Scholar
  44. 44.
    Ivanov SV, Ivanova AV, Salnikow K, Timofeeva O, Subramaniam M, Lerman MI (2008) Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors. Biochem Biophys Res Commun 370:536–540PubMedCentralPubMedGoogle Scholar
  45. 45.
    Jiang J, Chan YS, Loh YH et al (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360PubMedGoogle Scholar
  46. 46.
    Kang L, Lu B, Xu J, Hu H, Lai M (2008) Downregulation of Kruppel-like factor 9 in human colorectal cancer. Pathol Int 58:334–338PubMedGoogle Scholar
  47. 47.
    King KE, Iyemere VP, Weissberg PL, Shanahan CM (2003) Kruppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem 278:11661–11669PubMedGoogle Scholar
  48. 48.
    Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291PubMedGoogle Scholar
  49. 49.
    Kwak MK, Lee HJ, Hur K et al (2008) Expression of Kruppel-like factor 5 in human gastric carcinomas. J Cancer Res Clin Oncol 134:163–167PubMedGoogle Scholar
  50. 50.
    Lai JK, Wu HC, Shen YC, Hsieh HY, Yang SY, Chang CC (2012) Kruppel-like factor 4 is involved in cell scattering induced by hepatocyte growth factor. J Cell Sci 125:4853–4864PubMedGoogle Scholar
  51. 51.
    Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedGoogle Scholar
  52. 52.
    Le MC, Bubendorf L, Ruiz C et al (2013) Klf4 transcription factor is expressed in the cytoplasm of prostate cancer cells. Eur J Cancer 49:955–963Google Scholar
  53. 53.
    Leng Z, Tao K, Xia Q et al (2013) Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One 8:e56082PubMedCentralPubMedGoogle Scholar
  54. 54.
    Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2013) Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett 338:94–100PubMedCentralPubMedGoogle Scholar
  55. 55.
    Limame R, de Beeck KO, Lardon F, De Wever O, Pauwels P (2014) Kruppel-like factors in cancer progression: three fingers on the steering wheel. Oncotarget 5:29–48PubMedCentralPubMedGoogle Scholar
  56. 56.
    Lin ZS, Chu HC, Yen YC, Lewis BC, Chen YW (2012) Kruppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS One 7:e43593PubMedCentralPubMedGoogle Scholar
  57. 57.
    Liu L, Liu N, Xu M et al (2012) Lentivirus-delivered Kruppel-like factor 8 small interfering RNA inhibits gastric cancer cell growth in vitro and in vivo. Tumour Biol 33:53–61PubMedGoogle Scholar
  58. 58.
    Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406PubMedCentralPubMedGoogle Scholar
  59. 59.
    Lyng H, Brovig RS, Svendsrud DH et al (2006) Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 7:268PubMedCentralPubMedGoogle Scholar
  60. 60.
    Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296PubMedGoogle Scholar
  61. 61.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCentralPubMedGoogle Scholar
  62. 62.
    McConnell BB, Yang VW (2010) Mammalian Kruppel-like factors in health and diseases. Physiol Rev 90:1337–1381PubMedCentralPubMedGoogle Scholar
  63. 63.
    Meyer SE, Hasenstein JR, Baktula A et al (2010) Kruppel-like factor 5 is not required for K-RasG12D lung tumorigenesis, but represses ABCG2 expression and is associated with better disease-specific survival. Am J Pathol 177:1503–1513PubMedCentralPubMedGoogle Scholar
  64. 64.
    Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127:2021–2036PubMedGoogle Scholar
  65. 65.
    Miller IJ, Bieker JJ (1993) A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol 13:2776–2786PubMedCentralPubMedGoogle Scholar
  66. 66.
    Miyoshi N, Ishii H, Nagai K et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107:40–45PubMedCentralPubMedGoogle Scholar
  67. 67.
    Mori A, Moser C, Lang SA et al (2009) Up-regulation of Kruppel-like factor 5 in pancreatic cancer is promoted by interleukin-1beta signaling and hypoxia-inducible factor-1alpha. Mol Cancer Res 7:1390–1398PubMedGoogle Scholar
  68. 68.
    Nagata S, Hirano K, Kanemori M, Sun LT, Tada T (2012) Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells. PLoS One 7:e48699PubMedCentralPubMedGoogle Scholar
  69. 69.
    Nakahara Y, Northcott PA, Li M et al (2010) Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia 12:20–27PubMedCentralPubMedGoogle Scholar
  70. 70.
    Nakamura Y, Migita T, Hosoda F et al (2009) Kruppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int J Cancer 125:1859–1867PubMedGoogle Scholar
  71. 71.
    Nandan MO, Ghaleb AM, McConnell BB, Patel NV, Robine S, Yang VW (2010) Kruppel-like factor 5 is a crucial mediator of intestinal tumorigenesis in mice harboring combined ApcMin and KRASV12 mutations. Mol Cancer 9:63PubMedCentralPubMedGoogle Scholar
  72. 72.
    Narla G, DiFeo A, Fernandez Y et al (2008) KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J Clin Invest 118:2711–2721PubMedCentralPubMedGoogle Scholar
  73. 73.
    Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143PubMedGoogle Scholar
  74. 74.
    Nishi M, Sakai Y, Akutsu H et al (2013) Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene. doi: 10.1038/onc.2012.614 PubMedCentralGoogle Scholar
  75. 75.
    Okuda H, Xing F, Pandey PR et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444PubMedCentralPubMedGoogle Scholar
  76. 76.
    Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast 22(Suppl 2):S66–S72PubMedGoogle Scholar
  77. 77.
    Ray A, Alalem M, Ray BK (2013) Loss of epigenetic Kruppel-like factor 4 histone deacetylase (KLF-4-HDAC)-mediated transcriptional suppression is crucial in increasing vascular endothelial growth factor (VEGF) expression in breast cancer. J Biol Chem 288:27232–27242PubMedCentralPubMedGoogle Scholar
  78. 78.
    Reinholz MM, An MW, Johnsen SA et al (2004) Differential gene expression of TGF beta inducible early gene (TIEG), Smad7, Smad2 and Bard1 in normal and malignant breast tissue. Breast Cancer Res Treat 86:75–88PubMedGoogle Scholar
  79. 79.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedGoogle Scholar
  80. 80.
    Sarig R, Rivlin N, Brosh R et al (2010) Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207:2127–2140PubMedCentralPubMedGoogle Scholar
  81. 81.
    Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337:730–735PubMedGoogle Scholar
  82. 82.
    Schuh R, Aicher W, Gaul U et al (1986) A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47:1025–1032PubMedGoogle Scholar
  83. 83.
    Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29PubMedGoogle Scholar
  84. 84.
    Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  85. 85.
    Sun Z, Han Q, Zhou N et al (2013) MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol 7:884–894PubMedGoogle Scholar
  86. 86.
    Tahara E, Kadara H, Lacroix L, Lotan D, Lotan R (2009) Activation of protein kinase C by phorbol 12-myristate 13-acetate suppresses the growth of lung cancer cells through KLF6 induction. Cancer Biol Ther 8:801–807PubMedGoogle Scholar
  87. 87.
    Tai SK, Yang MH, Chang SY et al (2011) Persistent Kruppel-like factor 4 expression predicts progression and poor prognosis of head and neck squamous cell carcinoma. Cancer Sci 102:895–902PubMedGoogle Scholar
  88. 88.
    Tang SN, Fu J, Nall D, Rodova M, Shankar S, Srivastava RK (2012) Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int J Cancer 131:30–40PubMedCentralPubMedGoogle Scholar
  89. 89.
    Taniguchi H, Jacinto FV, Villanueva A et al (2012) Silencing of Kruppel-like factor 2 by the histone methyltransferase EZH2 in human cancer. Oncogene 31:1988–1994PubMedCentralPubMedGoogle Scholar
  90. 90.
    Tchirkov A, Sapin V, Marceau G et al (2010) Increased expression of the oncogenic KLF6-SV1 transcript in human glioblastoma. Clin Chem Lab Med 48:1167–1170PubMedGoogle Scholar
  91. 91.
    Teixeira MS, Camacho-Vanegas O, Fernandez Y et al (2007) KLF6 allelic loss is associated with tumor recurrence and markedly decreased survival in head and neck squamous cell carcinoma. Int J Cancer 121:1976–1983PubMedGoogle Scholar
  92. 92.
    Tetreault MP, Yang Y, Katz JP (2013) Kruppel-like factors in cancer. Nat Rev Cancer 13:701–713PubMedGoogle Scholar
  93. 93.
    Tiwari N, Meyer-Schaller N, Arnold P et al (2013) Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PLoS One 8:e57329PubMedCentralPubMedGoogle Scholar
  94. 94.
    Vaira V, Faversani A, Martin NM et al (2013) Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res 73:2695–2705PubMedCentralPubMedGoogle Scholar
  95. 95.
    Wang X, Lu H, Li T et al (2013) Kruppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res 3:356–373PubMedCentralPubMedGoogle Scholar
  96. 96.
    Wang X, Lu H, Urvalek AM et al (2011) KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30:1901–1911PubMedCentralPubMedGoogle Scholar
  97. 97.
    Wang X, Urvalek AM, Liu J, Zhao J (2008) Activation of KLF8 transcription by focal adhesion kinase in human ovarian epithelial and cancer cells. J Biol Chem 283:13934–13942PubMedGoogle Scholar
  98. 98.
    Wei D, Kanai M, Jia Z, Le X, Xie K (2008) Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 68:4631–4639PubMedCentralPubMedGoogle Scholar
  99. 99.
    Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495PubMedGoogle Scholar
  100. 100.
    Wong CW, Hou PS, Tseng SF et al (2010) Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 28:1510–1517PubMedGoogle Scholar
  101. 101.
    Wu XQ, Huang C, He X et al (2013) Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal 25:2462–2468PubMedGoogle Scholar
  102. 102.
    Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49PubMedGoogle Scholar
  103. 103.
    Yang T, Cai SY, Zhang J et al (2012) Kruppel-like factor 8 is a new Wnt/beta-catenin signaling target gene and regulator in hepatocellular carcinoma. PLoS One 7:e39668PubMedCentralPubMedGoogle Scholar
  104. 104.
    Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829PubMedGoogle Scholar
  105. 105.
    Ying M, Sang Y, Li Y et al (2011) Kruppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells 29:20–31PubMedCentralPubMedGoogle Scholar
  106. 106.
    Yori JL, Johnson E, Zhou G, Jain MK, Keri RA (2010) Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem 285:16854–16863PubMedCentralPubMedGoogle Scholar
  107. 107.
    Yori JL, Seachrist DD, Johnson E et al (2011) Kruppel-like factor 4 inhibits tumorigenic progression and metastasis in a mouse model of breast cancer. Neoplasia 13:601–610PubMedCentralPubMedGoogle Scholar
  108. 108.
    Yu T, Chen X, Zhang W et al (2012) Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem 287:3760–3768PubMedCentralPubMedGoogle Scholar
  109. 109.
    Yu F, Li J, Chen H et al (2011) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161–2172PubMedCentralPubMedGoogle Scholar
  110. 110.
    Zammarchi F, Morelli M, Menicagli M et al (2011) KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am J Pathol 178:361–372PubMedCentralPubMedGoogle Scholar
  111. 111.
    Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013) Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32:2249–2260, 2260.e1–21PubMedCentralPubMedGoogle Scholar
  112. 112.
    Zhang X, Yang JJ, Kim YS, Kim KY, Ahn WS, Yang S (2010) An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. Int J Oncol 36:405–414PubMedGoogle Scholar
  113. 113.
    Zhenzhen Z, De’an T, Limin X, Wei Y, Min L (2012) New candidate tumor-suppressor gene KLF6 and its splice variant KLF6 SV2 counterbalancing expression in primary hepatocarcinoma. Hepatogastroenterology 59:473–476PubMedGoogle Scholar

Copyright information

© University of Navarra 2015

Authors and Affiliations

  1. 1.Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of StomatologySichuan UniversityChengduChina

Personalised recommendations