Journal of Physiology and Biochemistry

, Volume 71, Issue 1, pp 133–140 | Cite as

Regulatory role of adenosine in insulin secretion from pancreatic β-cells—Action via adenosine A1 receptor and beyond

Mini Review

Abstract

Under physiological conditions, insulin secretion from pancreatic β-cells is tightly regulated by different factors, including nutrients, nervous system, and other hormones. Pancreatic β-cells are also influenced by paracrine and autocrine interactions. The results of rodent studies indicate that adenosine is present within pancreatic islets and is implicated in the regulation of insulin secretion; however, effects depend on adenosine and glucose concentrations. Moreover, species differences in adenosine action were found. In rat islets, low adenosine was demonstrated to decrease glucose-induced insulin secretion and this effect is mediated via adenosine A1 receptor. In the presence of high adenosine concentrations, other mechanisms are activated and glucose-induced insulin secretion is increased. It is also well established that suppression of adenosine action increases insulin-secretory response of β-cells to glucose. In mouse islets, low adenosine concentrations do not significantly affect insulin secretion. However, in the presence of higher adenosine concentrations, potentiation of glucose-induced insulin secretion was demonstrated. It is also known that upon stimulation of insulin secretion, both rat and mouse islets release ATP. In rat islets, ATP undergoes extracellular conversion to adenosine. However, mouse islets are unable to convert extracellularly ATP to adenosine and adenosine arises from intracellular ATP degradation.

Keywords

Insulin Islets Adenosine 

References

  1. 1.
    American Diabetes Association (2006) Diagnosis and classification of diabetes mellitus. Diabetes Care 29:S43–S48Google Scholar
  2. 2.
    Andersson O (2014) Role of adenosine signalling and metabolism in β-cell regeneration. Exp Cell Res 1 321(1):3–10CrossRefGoogle Scholar
  3. 3.
    Bertrand G, Nenquin M, Henquin JC (1989) Comparison of the inhibition of insulin release by activation of adenosine and alpha 2-adrenergic receptors in rat beta-cells. Biochem J 259(1):223–228PubMedCentralPubMedGoogle Scholar
  4. 4.
    Bertrand G, Petit P, Bozem M et al (1989) Membrane and intracellular effects of adenosine in mouse pancreatic beta-cells. Am J Physiol 257(4):473–478Google Scholar
  5. 5.
    Braun M, Ramracheya R, Rorsman P (2012) Autocrine regulation of insulin secretion. Diab Obes Metab 14(3):143–151CrossRefGoogle Scholar
  6. 6.
    Burnstock G, Novak I (2012) Purinergic signalling in the pancreas in health and disease. J Endocrinol 213(2):123–141CrossRefPubMedGoogle Scholar
  7. 7.
    Burnstock G, Novak I (2013) Purinergic signalling and diabetes. Purinergic Signal 9(3):307–324CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Caicedo A (2013) Paracrine and autocrine interactions in the human islet: more than meets the eye. Semin Cell Develop Biol 24(1):11–21CrossRefGoogle Scholar
  9. 9.
    Campbell IL, Taylor KW (1982) Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism. Biochem J 204(3):689–696PubMedCentralPubMedGoogle Scholar
  10. 10.
    Chapal J, Loubatières-Mariani MM, Roye M, Zerbib A (1984) Effects of adenosine, adenosine triphosphate and structural analogues on glucagon secretion from the perfused pancreas of rat in vitro. Br J Pharmacol 83(4):927–933CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Chapal J, Loubatières-Mariani MM, Petit P, Roye M (1985) Evidence for an A2-subtype adenosine receptor on pancreatic glucagon secreting cells. Br J Pharmacol 86(3):565–956CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Chhabra P, Wang K, Zeng Q, Jecmenica M, Langman L, Linden J, Ketchum RJ, Brayman KL (2010) Adenosine A(2A) agonist administration improves islet transplant outcome: evidence for the role of innate immunity in islet graft rejection. Cell Transplant 19(5):597–612CrossRefPubMedGoogle Scholar
  13. 13.
    Colgan SP, Eltzschig HK, Eckle T et al (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2(2):351–360CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Drucker DJ, Sherman SI, Gorelick FS et al (2010) Incretin-based therapies for the treatment of type 2 diabetes: evaluation of the risks and benefits. Diabetes Care 33(2):428–433CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Fredholm BB, Ijzerman AP, Jacobson KA et al (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552PubMedGoogle Scholar
  16. 16.
    Furman B, Ong WK, Pyne NJ (2010) Cyclic AMP signaling in pancreatic islets. Adv Experim Med Biol 654:281–304CrossRefGoogle Scholar
  17. 17.
    Geisler JC, Corbin KL, Li Q et al (2012) Vesicular nucleotide transporter-mediated ATP release regulates insulin secretion. Endocrinology 154(2):675–684CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Grapengiesser E, Salehi A, Qader SS, Hellman B (2006) Glucose induces glucagon release pulses antisynchronous with insulin and sensitive to purinoceptor inhibition. Endocrinology 147(7):3472–3477CrossRefPubMedGoogle Scholar
  19. 19.
    Grill V, Cerasi E (1973) Activation by glucose of adenyl cyclase in pancreatic islets of the rat. FEBS Lett 33(3):311–314CrossRefPubMedGoogle Scholar
  20. 20.
    Gross R, Hillaire-Buys D, Bertrand G, Ribes G, Loubatieres-Mariani MM (1989) Diabetes and impaired response of glucagon cells and vascular bed to adenosine in rat pancreas. Diabetes 38(10):1291–1295CrossRefPubMedGoogle Scholar
  21. 21.
    Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49(11):1751–1760CrossRefPubMedGoogle Scholar
  22. 22.
    Henquin JC (2011) The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Res Clin Pract 93(1):27–31CrossRefGoogle Scholar
  23. 23.
    Ismail NA, El Denshary EE, Montague W (1977) Adenosine and the regulation of insulin secretion by isolated rat islets of Langerhans. Biochem J 164(2):409–413PubMedCentralPubMedGoogle Scholar
  24. 24.
    Johansson SM, Salehi A, Sandström ME et al (2007) A1 receptor deficiency causes increased insulin and glucagon secretion in mice. Biochem Pharmacol 74(11):1628–1635CrossRefPubMedGoogle Scholar
  25. 25.
    Lavoie EG, Fausther M, Kauffenstein G et al (2010) Identification of the ectonucleotidases expressed in mouse, rat, and human Langerhans islets: potential role of NTPDase3 in insulin secretion. Am J Physiol Endocrinol Metab 299(4):647–656CrossRefGoogle Scholar
  26. 26.
    Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226CrossRefPubMedGoogle Scholar
  27. 27.
    Lohse MJ, Klotz KN, Lindenborn-Fotinos J et al (1987) 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)–a selective high affinity antagonist radioligand for A1 adenosine receptors. Naun Schmied Arch Pharmacol 336(2):204–210CrossRefGoogle Scholar
  28. 28.
    MacDonald MJ, Longacre MJ, Kendrick MA (2009) Mitochondrial malic enzyme (ME2) in pancreatic islets of the human, rat and mouse and clonal insulinoma cells. Arch Biochem Biophys 488(2):100–104CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    MacDonald MJ, Longacre MJ, Stoker SW et al (2011) Differences between human and rodent pancreatic islets: Low pyruvate carboxylase, atp citrate lyase, and pyruvate carboxylation and high glucose-stimulated acetoacetate in human pancreatic islets. J Biol Chem 286(21):18383–18396CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Maechler P, Carobbio S, Rubi S (2006) In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cel Biol 38(5–6):696–709CrossRefGoogle Scholar
  31. 31.
    Malaisse WJ, Lebrun P, Pirotte B et al (1996) The riddle of formycin A insulinotropic action. Biochem Mol Med 57(1):47–63CrossRefPubMedGoogle Scholar
  32. 32.
    Németh ZH, Bleich D, Csóka B, Pacher P, Mabley JG, Himer L, Vizi ES, Deitch EA, Szabó C, Cronstein BN, Haskó G (2007) Adenosine receptor activation ameliorates type 1 diabetes. FASEB J 21(10):2379–2388CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Ohtani M, Oka T, Ohura K (2013) Possible involvement of A2A and A3 receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets”. Gen Comp Endocrinol 15(187):86–94CrossRefGoogle Scholar
  34. 34.
    Petit P, Lajoix AD, Gross R (2009) P2 purinergic signalling in the pancreatic beta-cell: Control of insulin secretion and pharmacology. Eur J Pharmacol Sci 37(2):67–75CrossRefGoogle Scholar
  35. 35.
    Phillips LK, Prins JB (2011) Update on incretin hormones. Ann NY Acad Sci 243:55–74CrossRefGoogle Scholar
  36. 36.
    Richards-Williams C, Contreras JL, Berecek KH et al (2008) Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion. Purinergic Signal 4(4):393–405CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Salehi A, Parandeh F, Fredholm BB et al (2009) Absence of adenosine A1 receptors unmasks pulses of insulin release and prolongs those of glucagon and somatostatin. Life Sci 85(11–12):470–476CrossRefPubMedGoogle Scholar
  38. 38.
    Satin LS, Kinard TA (1998) Neurotransmitters and their receptors in the islets of Langerhans of the pancreas: what messages do acetylcholine, glutamate, and GABA transmit? Endocrine 8(3):213–223CrossRefPubMedGoogle Scholar
  39. 39.
    Schatz H, Kullek U (1980) Studies on the local (paracrine) actions of glucagon, somatostatin and insulin in isolated islets of rat pancreas. FEBS Lett 122(2):201–210CrossRefGoogle Scholar
  40. 40.
    Spychala J, Datta NS, Takabayashi K et al (1996) Cloning of human adenosine kinase cDNA: Sequence similarity to microbial ribokinases and fructokinases. Proc Natl Acad Sci U S A 93(3):1232–1237CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546PubMedGoogle Scholar
  42. 42.
    Tengholm A (2012) Cyclic AMP dynamics in the pancreatic β-cell. Uppsala J Med Sci 117(4):355–369CrossRefGoogle Scholar
  43. 43.
    Töpfer M, Burbiel CE, Müller CE et al (2008) Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: the possible contribution of 86Rb + efflux and 45Ca2+ uptake. Cell Biochem Funct 26(8):833–843CrossRefPubMedGoogle Scholar
  44. 44.
    Tudurí E, Filiputti E, Carneiro EM et al (2008) Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors. Am J Physiol Endocrinol Metab 294(55):952–960CrossRefGoogle Scholar
  45. 45.
    Verspohl EJ, Johannwille B, Waheed A et al (2002) Effect of purinergic agonists and antagonists on insulin secretion from INS-1 cells (insulinoma cell line) and rat pancreatic islets. Can J Physiol Pharmacol 80(6):562–568CrossRefPubMedGoogle Scholar
  46. 46.
    Weir GC, Bonner-Weir S (2013) Islet β cell mass in diabetes and how it relates to function, birth, and death. Ann N Y Acad Sci 1281:92–105CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Yang GK, Squires PE, Tian F et al (2012) Glucose decreases extracellular adenosine levels in isolated mouse and rat pancreatic islets. Islets 4(1):64–70CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Yip L, Taylor C, Whiting CC, Fathman CG (2013) Diminished adenosine A1 receptor expression in pancreatic α-cells may contribute to the pathology of type 1 diabetes. Diabetes 62(12):4208–4219CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmied Arch Pharmacol 362(4–5):299–309CrossRefGoogle Scholar
  50. 50.
    Zywert A, Szkudelska K, Szkudelski T (2011) Effects of adenosine A1 receptor antagonism on insulin secretion from rat pancreatic islets. Physiol Res 60(6):905–911PubMedGoogle Scholar

Copyright information

© University of Navarra 2014

Authors and Affiliations

  1. 1.Department of Animal Physiology and BiochemistryPoznan University of Life SciencesPoznanPoland

Personalised recommendations