Advertisement

Journal of Physiology and Biochemistry

, Volume 70, Issue 2, pp 569–581 | Cite as

Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle

  • Irving Omar Estévez-García
  • Verónica Cordoba-Gonzalez
  • Eleazar Lara-Padilla
  • Abel Fuentes-Toledo
  • Ramcés Falfán-Valencia
  • Rafael Campos-Rodríguez
  • Edgar Abarca-RojanoEmail author
Mini Review

Abstract

Recent studies have given us a clue as to how modulations of both metabolic pathways and cyclins by the ubiquitin system influence cell cycle progression. Among these metabolic modulations, an aerobic glycolysis and glutaminolysis represent an initial step for metabolic machinery adaptation. The enzymes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and glutaminase-1 (GLS1) maintain a high abundance in glycolytic intermediates (for synthesis of non-essential amino acids, the use of ribose for the synthesis of nucleotides and hexosamine biosynthesis), as well as tricarboxylic acid cycle intermediates (replenishing the loss of mitochondrial citrate), respectively. On the one hand, regulation of these key metabolic enzymes by ubiquitin ligases anaphase-promoting complex/cyclosome (APC/C) and Skp1/cullin/F-box (SCF) has revealed the importance of anaplerosis by both glycolysis and glutaminolysis to overcome the restriction point of the G1 phase by maintaining high levels of glycolytic and glutaminolytic intermediates. On the other hand, only glutaminolytic intermediates are necessary to drive cell growth through the S and G2 phases of the cell cycle. It is interesting to appreciate how this reorganization of the metabolic machinery, which has been observed beyond cellular proliferation, is a crucial determinant of a cell’s decision to proliferate. Here, we explore a unifying view of interactions between the ubiquitin system, metabolic activity, and cyclin-dependent kinase complexes activity during the cell cycle.

Keywords

Anaphase-promoting complex/cyclosome Skp1/cullin/F-box Cell cycle Aerobic glycolysis Glutaminolysis Anaplerosis 

Notes

Acknowledgments

The present work was performed with the support of “Instituto Politécnico Nacional” through “Programa Institucional para la Formación de Investigadores.”

References

  1. 1.
    Abarca-Rojano E, Rosas-Medina P, Zamudio-Cortez P, Mondragon-Flores R, Sanchez-Garcia FJ (2003) Mycobacterium tuberculosis virulence correlates with mitochondrial cytochrome c release in infected macrophages. Scand J Immunol 58:419–427PubMedGoogle Scholar
  2. 2.
    Almeida A, Almeida J, Bolanos JP, Moncada S (2001) Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci U S A 98:15294–15299PubMedCentralPubMedGoogle Scholar
  3. 3.
    Almeida A, Bolanos JP, Moncada S (2010) E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci U S A 107:738–741PubMedCentralPubMedGoogle Scholar
  4. 4.
    Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C et al (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci U S A 93:12969–12973PubMedCentralPubMedGoogle Scholar
  5. 5.
    Ardawi MS, Newsholme EA (1983) Glutamine metabolism in lymphocytes of the rat. Biochem J 212:835–842PubMedCentralPubMedGoogle Scholar
  6. 6.
    Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428:190–193PubMedGoogle Scholar
  7. 7.
    Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS et al (2004) Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18:1303–1305PubMedGoogle Scholar
  8. 8.
    Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24:6314–6322PubMedGoogle Scholar
  9. 9.
    Boehmelt G, Fialka I, Brothers G, McGinley MD, Patterson SD et al (2000) Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. Differential expression and intracellular membrane association. J Biol Chem 275:12821–12832PubMedGoogle Scholar
  10. 10.
    Boehmelt G, Wakeham A, Elia A, Sasaki T, Plyte S et al (2000) Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J 19:5092–5104PubMedCentralPubMedGoogle Scholar
  11. 11.
    Boscher C, Dennis JW, Nabi IR (2011) Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 23:383–392PubMedGoogle Scholar
  12. 12.
    Brand K (1985) Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J 228:353–361PubMedCentralPubMedGoogle Scholar
  13. 13.
    Brown CR, Kennedy CJ, Delmar VA, Forbes DJ, Silver PA (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22:627–639PubMedCentralPubMedGoogle Scholar
  14. 14.
    Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437PubMedCentralPubMedGoogle Scholar
  15. 15.
    Capotosti F, Guernier S, Lammers F, Waridel P, Cai Y et al (2011) O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell 144:376–388PubMedGoogle Scholar
  16. 16.
    Chalkley RJ, Thalhammer A, Schoepfer R, Burlingame AL (2009) Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc Natl Acad Sci U S A 106:8894–8899PubMedCentralPubMedGoogle Scholar
  17. 17.
    Chan CH, Li CF, Yang WL, Gao Y, Lee SW et al (2012) The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149:1098–1111PubMedCentralPubMedGoogle Scholar
  18. 18.
    Chesney J, Mitchell R, Benigni F, Bacher M, Spiegel L et al (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A 96:3047–3052PubMedCentralPubMedGoogle Scholar
  19. 19.
    Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186PubMedGoogle Scholar
  20. 20.
    Clift D, Marston AL (2011) The role of shugoshin in meiotic chromosome segregation. Cytogenet Genome Res 133:234–242PubMedCentralPubMedGoogle Scholar
  21. 21.
    Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG et al (2010) The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A 107:1894–1899PubMedCentralPubMedGoogle Scholar
  22. 22.
    Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I et al (2011) Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc Natl Acad Sci U S A 108:21069–21074PubMedCentralPubMedGoogle Scholar
  23. 23.
    Colombo SL, Palacios-Callender M, Frakich N, De Leon J, Schmitt CA et al (2010) Anaphase-promoting complex/cyclosome-Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc Natl Acad Sci U S A 107:18868–18873PubMedCentralPubMedGoogle Scholar
  24. 24.
    Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244PubMedGoogle Scholar
  25. 25.
    Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H et al (2011) Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc Natl Acad Sci U S A 108:2747–2752PubMedCentralPubMedGoogle Scholar
  26. 26.
    David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–368PubMedCentralPubMedGoogle Scholar
  27. 27.
    De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW et al (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663PubMedGoogle Scholar
  28. 28.
    Dennis JW, Nabi IR, Demetriou M (2009) Metabolism, cell surface organization, and disease. Cell 139:1229–1241PubMedCentralPubMedGoogle Scholar
  29. 29.
    Driscoll JJ, Woodle ES (2012) Targeting the ubiquitin + proteasome system in solid tumors. Semin Hematol 49:277–283PubMedGoogle Scholar
  30. 30.
    Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R (1956) The growth response of mammalian cells in tissue culture to l-glutamine and l-glutamic acid. J Biol Chem 218:607–616PubMedGoogle Scholar
  31. 31.
    Edinger AL, Thompson CB (2002) Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 13:2276–2288PubMedCentralPubMedGoogle Scholar
  32. 32.
    Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899PubMedGoogle Scholar
  33. 33.
    Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619PubMedGoogle Scholar
  34. 34.
    Fang G (2002) Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Mol Biol Cell 13:755–766PubMedCentralPubMedGoogle Scholar
  35. 35.
    Filipp FV, Ratnikov B, De Ingeniis J, Smith JW, Osterman AL et al (2012) Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell Melanoma Res 25:732–739PubMedCentralPubMedGoogle Scholar
  36. 36.
    Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L et al (2012) β-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem 287:12195–12203PubMedCentralPubMedGoogle Scholar
  37. 37.
    Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8:438–449PubMedCentralPubMedGoogle Scholar
  38. 38.
    Fukushima H, Ogura K, Wan L, Lu Y, Li V et al (2013) SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep 4:803–816PubMedGoogle Scholar
  39. 39.
    Girard F, Fernandez A, Lamb N (1995) Delayed cyclin A and B1 degradation in non-transformed mammalian cells. J Cell Sci 108(Pt 7):2599–2608PubMedGoogle Scholar
  40. 40.
    Goto H, Motomura S, Wilson AC, Freiman RN, Nakabeppu Y et al (1997) A single-point mutation in HCF causes temperature-sensitive cell-cycle arrest and disrupts VP16 function. Genes Dev 11:726–737PubMedGoogle Scholar
  41. 41.
    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295PubMedCentralPubMedGoogle Scholar
  42. 42.
    Hanover JA (2011) A versatile sugar transferase makes the cut. Cell 144:321–323PubMedGoogle Scholar
  43. 43.
    Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752PubMedGoogle Scholar
  44. 44.
    Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S et al (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2:ra73PubMedCentralPubMedGoogle Scholar
  45. 45.
    Hsu JY, Reimann JD, Sorensen CS, Lukas J, Jackson PK (2002) E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol 4:358–366PubMedGoogle Scholar
  46. 46.
    Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y et al (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17:6573–6586PubMedCentralPubMedGoogle Scholar
  47. 47.
    Knosp O, Talasz H, Puschendorf B (1991) Histone acetylation and histone synthesis in mouse fibroblasts during quiescence and restimulation into S-phase. Mol Cell Biochem 101:51–58PubMedGoogle Scholar
  48. 48.
    Kornberg HL (1965) Anaplerotic sequences in microbial metabolism. Angew Chem Int Ed Engl 4:558–565Google Scholar
  49. 49.
    Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A et al (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22:6598–6609PubMedCentralPubMedGoogle Scholar
  50. 50.
    Kramer ER, Scheuringer N, Podtelejnikov AV, Mann M, Peters JM (2000) Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol Biol Cell 11:1555–1569PubMedCentralPubMedGoogle Scholar
  51. 51.
    Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272:9308–9315PubMedGoogle Scholar
  52. 52.
    Kristie TM, Liang Y, Vogel JL (2010) Control of alpha-herpesvirus IE gene expression by HCF-1 coupled chromatin modification activities. Biochim Biophys Acta 1799:257–265PubMedCentralPubMedGoogle Scholar
  53. 53.
    Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16:202–208PubMedGoogle Scholar
  54. 54.
    Lau KS, Khan S, Dennis JW (2008) Genome-scale identification of UDP-GlcNAc-dependent pathways. Proteomics 8:3294–3302PubMedGoogle Scholar
  55. 55.
    Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–134PubMedGoogle Scholar
  56. 56.
    Li H, Jogl G (2009) Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem 284:1748–1754PubMedCentralPubMedGoogle Scholar
  57. 57.
    Li M, Zhang P (2009) The function of APC/CCdh1 in cell cycle and beyond. Cell Div 4:2PubMedCentralPubMedGoogle Scholar
  58. 58.
    Lindon C, Pines J (2004) Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol 164:233–241PubMedCentralPubMedGoogle Scholar
  59. 59.
    Listovsky T, Oren YS, Yudkovsky Y, Mahbubani HM, Weiss AM et al (2004) Mammalian Cdh1/Fzr mediates its own degradation. EMBO J 23:1619–1626PubMedCentralPubMedGoogle Scholar
  60. 60.
    Littlepage LE, Ruderman JV (2002) Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev 16:2274–2285PubMedCentralPubMedGoogle Scholar
  61. 61.
    Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478PubMedCentralPubMedGoogle Scholar
  62. 62.
    Lubas WA, Frank DW, Krause M, Hanover JA (1997) O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem 272:9316–9324PubMedGoogle Scholar
  63. 63.
    Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275:10983–10988PubMedGoogle Scholar
  64. 64.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedCentralPubMedGoogle Scholar
  65. 65.
    McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053PubMedGoogle Scholar
  66. 66.
    Megee PC, Morgan BA, Smith MM (1995) Histone H4 and the maintenance of genome integrity. Genes Dev 9:1716–1727PubMedGoogle Scholar
  67. 67.
    Mendelsohn R, Cheung P, Berger L, Partridge E, Lau K et al (2007) Complex N-glycan and metabolic control in tumor cells. Cancer Res 67:9771–9780PubMedGoogle Scholar
  68. 68.
    Moncada S, Higgs EA, Colombo SL (2012) Fulfilling the metabolic requirements for cell proliferation. Biochem J 446:1–7PubMedGoogle Scholar
  69. 69.
    Nasmyth K (2002) Segregating sister genomes: the molecular biology of chromosome separation. Science 297:559–565PubMedGoogle Scholar
  70. 70.
    Newsholme P, Curi R, Gordon S, Newsholme EA (1986) Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 239:121–125PubMedCentralPubMedGoogle Scholar
  71. 71.
    Novellasdemunt L, Bultot L, Manzano A, Ventura F, Rosa JL et al (2013) PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J 452:531–543PubMedGoogle Scholar
  72. 72.
    Ookhtens M, Kannan R, Lyon I, Baker N (1984) Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 247:R146–R153PubMedGoogle Scholar
  73. 73.
    Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246:603–608PubMedGoogle Scholar
  74. 74.
    Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P et al (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124PubMedGoogle Scholar
  75. 75.
    Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507PubMedGoogle Scholar
  76. 76.
    Pizer ES, Wood FD, Pasternack GR, Kuhajda FP (1996) Fatty acid synthase (FAS): a target for cytotoxic antimetabolites in HL60 promyelocytic leukemia cells. Cancer Res 56:745–751PubMedGoogle Scholar
  77. 77.
    Planas-Silva MD, Weinberg RA (1997) The restriction point and control of cell proliferation. Curr Opin Cell Biol 9:768–772PubMedGoogle Scholar
  78. 78.
    Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254:2669–2676PubMedGoogle Scholar
  79. 79.
    Robbins JA, Cross FR (2010) Requirements and reasons for effective inhibition of the anaphase promoting complex activator CDH1. Mol Biol Cell 21:914–925PubMedCentralPubMedGoogle Scholar
  80. 80.
    Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107:19915–19920PubMedCentralPubMedGoogle Scholar
  81. 81.
    Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354PubMedGoogle Scholar
  82. 82.
    Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199PubMedCentralPubMedGoogle Scholar
  83. 83.
    Shim H, Dolde C, Lewis BC, Wu CS, Dang G et al (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663PubMedCentralPubMedGoogle Scholar
  84. 84.
    Skaar JR, Pagano M (2008) Cdh1: a master G0/G1 regulator. Nat Cell Biol 10:755–757PubMedCentralPubMedGoogle Scholar
  85. 85.
    Sudakin V, Chan GK, Yen TJ (2001) Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol 154:925–936PubMedCentralPubMedGoogle Scholar
  86. 86.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedCentralPubMedGoogle Scholar
  87. 87.
    Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217PubMedGoogle Scholar
  88. 88.
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF et al (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496:238–242PubMedGoogle Scholar
  89. 89.
    Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH et al (2011) Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc Natl Acad Sci U S A 108:5278–5283PubMedCentralPubMedGoogle Scholar
  90. 90.
    Van Schaftingen E, Lederer B, Bartrons R, Hers HG (1982) A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 129:191–195PubMedGoogle Scholar
  91. 91.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCentralPubMedGoogle Scholar
  92. 92.
    Vodermaier HC (2004) APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14:R787–R796PubMedGoogle Scholar
  93. 93.
    Wang Q, Zhang Y, Yang C, Xiong H, Lin Y et al (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007PubMedGoogle Scholar
  94. 94.
    Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13:907–915PubMedGoogle Scholar
  95. 95.
    Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530PubMedCentralPubMedGoogle Scholar
  96. 96.
    Wasch R, Cross FR (2002) APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418:556–562PubMedGoogle Scholar
  97. 97.
    Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW et al (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194–198PubMedGoogle Scholar
  98. 98.
    Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080PubMedCentralPubMedGoogle Scholar
  99. 99.
    Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M et al (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24:2784–2799PubMedCentralPubMedGoogle Scholar
  100. 100.
    Wice BM, Reitzer LJ, Kennell D (1981) The continuous growth of vertebrate cells in the absence of sugar. J Biol Chem 256:7812–7819PubMedGoogle Scholar
  101. 101.
    Yalcin A, Clem BF, Simmons A, Lane A, Nelson K et al (2009) Nuclear targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via cyclin-dependent kinases. J Biol Chem 284:24223–24232PubMedCentralPubMedGoogle Scholar
  102. 102.
    Yalcin A, Telang S, Clem B, Chesney J (2009) Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. Exp Mol Pathol 86:174–179PubMedGoogle Scholar
  103. 103.
    Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178:93–105PubMedCentralPubMedGoogle Scholar
  104. 104.
    Zhang W, Bone JR, Edmondson DG, Turner BM, Roth SY (1998) Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J 17:3155–3167PubMedCentralPubMedGoogle Scholar
  105. 105.
    Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140:280–293PubMedCentralPubMedGoogle Scholar

Copyright information

© University of Navarra 2014

Authors and Affiliations

  • Irving Omar Estévez-García
    • 1
  • Verónica Cordoba-Gonzalez
    • 1
  • Eleazar Lara-Padilla
    • 1
  • Abel Fuentes-Toledo
    • 1
  • Ramcés Falfán-Valencia
    • 2
  • Rafael Campos-Rodríguez
    • 1
  • Edgar Abarca-Rojano
    • 1
    • 3
    Email author
  1. 1.Instituto Politecnico Nacional, Escuela Superior de Medicina, Seccion de Estudios de Posgrado e InvestigacionMéxico CityMexico
  2. 2.Laboratorio HLAInstituto Nacional de Enfermedades Respiratorias Ismael Cosio VillegasMéxico CityMexico
  3. 3.Laboratorio de Respiracion CelularInstituto Politecnico Nacional, Escuela Superior de Medicina, Seccion de Estudios de Posgrado e InvestigacionMexico D.F.Mexico

Personalised recommendations