Journal of Physiology and Biochemistry

, Volume 70, Issue 2, pp 639–646 | Cite as

Resveratrol does not increase body fat loss induced by energy restriction

  • Goiuri Alberdi
  • M. Teresa Macarulla
  • María P. Portillo
  • Víctor M. Rodríguez
Original Paper

Abstract

Resveratrol (RSV) is known to have an antiobesogenic effect because it mimics energy restriction. However, hardly any evidence exists concerning the combined effects of RSV and energy restriction on body fat reduction. So, the aim of the present study was to determine whether RSV increases body fat reduction induced by energy restriction. Male Wistar rats were fed a high-fat, high-sucrose diet for 6 weeks to obtain a diet-induced obesity model. Then they were submitted to a mild energy restriction (25 %) without or with RSV supplementation (30 mg/kg body weight/day) for 2 weeks. Final body weight, subcutaneous and intra-abdominal white adipose tissues weights, Adipose Index, and serum triacylglycerol, cholesterol, glucose, and insulin were assessed. Lipoprotein lipase (LPL), fatty acid synthase (FAS), and acetyl coenzyme A carboxylase (ACC) activities, as well as their genetic expressions, were measured in white adipose tissue. Final body weight, white adipose tissue weights, Adipose Index, and serum triacylglycerol, cholesterol, and insulin were reduced in both groups, but no differences were found among them. FAS, ACC, and LPL activities and expressions were also similar in both groups. These results suggest a lack of any adjuvant effect of RSV on energy restriction for obesity treatment purposes.

Keywords

Resveratrol Energy restriction Adipose tissue Lipogenesis 

References

  1. 1.
    Alberdi G, Rodríguez VM, Macarulla MT, Miranda J, Churruca I, Portillo MP (2013) Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition 29:562–567PubMedCrossRefGoogle Scholar
  2. 2.
    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Arias N, Andrés-Lacueva C, Portillo MP (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 8:29CrossRefGoogle Scholar
  3. 3.
    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Arias N, Portillo MP (2010) Reduction of adiposity by resveratrol: mechanisms of action. Obes Rev 11(suppl 1):131Google Scholar
  4. 4.
    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo M (2013) Thermogenesis is involved in body fat-lowering effect of resveratrol in rats. Food Chem 141:1530–1535PubMedCrossRefGoogle Scholar
  5. 5.
    Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3:e2264PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Barger JL, Walford RL, Weindruch R (2003) The retardation of aging by caloric restriction: its significance in the transgenic era. Exp Gerontol 38:1343–1351PubMedCrossRefGoogle Scholar
  7. 7.
    Borriello A, Cucciolla V, Della Ragione F, Galletti P (2010) Dietary polyphenols: focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis 20:618–625PubMedCrossRefGoogle Scholar
  8. 8.
    Bouwman FG, Claessens M, van Baak MA, Noben JP, Wang P, Saris WH, Mariman EC (2009) The physiologic effects of caloric restriction are reflected in the in vivo adipocyte-enriched proteome of overweight/obese subjects. J Proteome Res 8:5532–5540PubMedCrossRefGoogle Scholar
  9. 9.
    Bradamante S, Barenghi L, Villa A (2004) Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 22:169–188PubMedCrossRefGoogle Scholar
  10. 10.
    Bujanda L, Hijona E, Larzabal M, Beraza M, Aldazabal P, García-Urkia N, Sarasqueta C, Cosme A, Irastorza B, González A, Arenas JI Jr (2008) Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol 8:40PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chung JH, Manganiello V, Dyck JR (2012) Resveratrol as a calorie restriction mimetic: therapeutic implications. Trends Cell Biol 22:546–554PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chung KW, Kim DH, Park MH, Choi YJ, Kim ND, Lee J, Yu BP, Chung HY (2013) Recent advances in calorie restriction research on aging. Exp Gerontol 48:1048–1053CrossRefGoogle Scholar
  13. 13.
    Crujeiras AB, Parra D, Goyenechea E, Martínez JA (2008) Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest 38:672–678PubMedCrossRefGoogle Scholar
  14. 14.
    Cucciolla V, Borriello A, Oliva A, Galletti P, Zappia V, Della Ragione F (2007) Resveratrol: from basic science to the clinic. Cell Cycle 6:2495–2510PubMedCrossRefGoogle Scholar
  15. 15.
    Erskine JM, Jensen DR, Eckel RH (1994) Macronutrient regulation of lipoprotein lipase is posttranslational. J Nutr 124:500–507PubMedGoogle Scholar
  16. 16.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  17. 17.
    Gómez-Zorita S, Fernández-Quintela A, Macarulla MT, Aguirre L, Hijona E, Bujanda L, Milagro F, Martínez JA, Portillo MP (2012) Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 107:202–210PubMedCrossRefGoogle Scholar
  18. 18.
    Gómez-Zorita S, Tréguer K, Mercader J, Carpéné C (2013) Resveratrol directly affects in vitro lipolysis and glucose transport in human fat cells. J Physiol Biochem 69:585–593PubMedCrossRefGoogle Scholar
  19. 19.
    Guarente L (2008) Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 132:171–176PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122PubMedCrossRefGoogle Scholar
  21. 21.
    Larson-Meyer DE, Newcomer BR, Heilbronn LK, Volaufova J, Smith SR, Alfonso AJ, Lefevre M, Rood JC, Williamson DA, Ravussin E, Pennington CALERIE Team (2008) Effect of 6-month calorie restriction and exercise on serum and liver lipids and markers of liver function. Obesity (Silver Spring) 16:1355–1362CrossRefGoogle Scholar
  22. 22.
    Lasa A, Schweiger M, Kotzbeck P, Churruca I, Simón E, Zechner R, Portillo MP (2012) Resveratrol regulates lipolysis via adipose triglyceride lipase. J Nutr Biochem 23:379–384PubMedCrossRefGoogle Scholar
  23. 23.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  24. 24.
    Macarulla MT, Alberdi G, Gómez S, Tueros I, Bald C, Rodríguez VM, Martínez JA, Portillo MP (2009) Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 65:369–376PubMedCrossRefGoogle Scholar
  25. 25.
    Marchal J, Blanc S, Epelbaum J, Aujard F, Pifferi F (2012) Effects of chronic calorie restriction or dietary resveratrol supplementation on insulin sensitivity markers in a primate, Microcebus murinus. PLoS One 7:e34289PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Miranda J, Fernández-Quintela A, Churruca I, Rodríguez VM, Simón E, Portillo MP (2009) Hepatomegaly induced by trans-10,cis-12 conjugated linoleic acid in adult hamsters fed an atherogenic diet is not associated with steatosis. J Am Coll Nutr 28:43–49PubMedCrossRefGoogle Scholar
  27. 27.
    Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL, Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Sharma N, Arias EB, Sequea DA, Cartee GD (2012) Preventing the calorie restriction-induced increase in insulin-stimulated Akt2 phosphorylation eliminates calorie restriction’s effect on glucose uptake in skeletal muscle. Biochim Biophys Acta 1822:1735–1740PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Shillabeer G, Hornford J, Forden JM, Wong NC, Lau DC (1990) Hepatic and adipose tissue lipogenic enzyme mRNA levels are suppressed by high fat diets in the rat. J Lipid Res 31:623–631PubMedGoogle Scholar
  31. 31.
    Szkudelska K, Nogowski L, Szkudelski T (2009) Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 113:17–24PubMedCrossRefGoogle Scholar
  32. 32.
    So M, Gaidhu MP, Maghdoori B, Ceddia RB (2011) Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats. Lipids Health Dis 10:99PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Strable MS, Ntambi JM (2010) Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 45:199–214PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Tauriainen E, Luostarinen M, Martonen E, Finckenberg P, Kovalainen M, Huotari A, Herzig K-H, Lecklin A, Mervaala E (2011) Distinct effects of calorie restriction and resveratrol on diet-induced obesity and fatty liver formation. J Nutr Metab 2011:525094PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MK, Kunz I, Schrauwen-Hinderling VB, Blaak EE, Auwerx J, Schrauwen P (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622PubMedCrossRefGoogle Scholar
  36. 36.
    Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ (2011) Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J 10:107PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Tucci P (2012) Caloric restriction: is mammalian life extension linked to p53? Aging (Albany NY) 4:525–534Google Scholar
  38. 38.
    Zabala A, Churruca I, Fernández-Quintela A, Rodríguez VM, Macarulla M, Martínez JA, Portillo MP (2006) trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet. Br J Nutr 95:1112–1119PubMedCrossRefGoogle Scholar
  39. 39.
    Zabala A, Churruca I, Macarulla MT, Rodríguez VM, Fernández-Quintela A, Martínez JA, Portillo MP (2004) The trans-10,cis-12 isomer of conjugated linoleic acid reduces hepatic triacylglycerol content without affecting lipogenic enzymes in hamsters. Br J Nutr 92:383–389PubMedCrossRefGoogle Scholar

Copyright information

© University of Navarra 2014

Authors and Affiliations

  • Goiuri Alberdi
    • 1
    • 2
  • M. Teresa Macarulla
    • 1
    • 2
    • 3
  • María P. Portillo
    • 1
    • 2
  • Víctor M. Rodríguez
    • 1
    • 2
  1. 1.Nutrition and Obesity Group, Department of Nutrition and Food Sciences and Research Institute Lucio LascarayUniversity of the Basque Country (UPV/EHU)VitoriaSpain
  2. 2.CIBERobn Physiopathology of Obesity and NutritionInstitute of Health Carlos III (ISCIII)MadridSpain
  3. 3.Departamento de Nutrición y Bromatología, Facultad de FarmaciaVitoriaSpain

Personalised recommendations