Journal of Physiology and Biochemistry

, Volume 70, Issue 1, pp 129–139

An experimental model of partial insulin-like growth factor-1 deficiency in mice

  • I. Castilla-Cortazar
  • L. Guerra
  • J. E. Puche
  • U. Muñoz
  • R. Barhoum
  • E. Escudero
  • J. L. Lavandera
Original Paper


Insulin-like growth factor-1 (IGF-1) is responsible for many systemic growth hormone (GH) functions although it has an extensive number of inherent activities (anabolic, cytoprotective, and anti-inflammatory). The potential options for IGF-1 therapy arise as a promising strategy in a wide list of human diseases. However, deeper studies are needed from a suitable animal model. All human conditions of IGF-1 deficiency consist in partially decreased IGF-1 levels since total absence of this hormone is hardly compatible with life. The aim of this work was to confirm that heterozygous Igf-1+/− mice (Hz) may be considered as an appropriate animal model to study conditions of IGF-1 deficiency, focusing on early ages. Heterozygous Igf-1+/− mice were compared to homozygous Igf-1+/+ by assessing gene expression by quantitative PCR, serum circulating levels by ELISA, and tissue staining. Compared to controls, Hz mice (25 days old) showed a partial but significant reduction of IGF-1 circulating levels, correlating with a reduced body weight and diminished serum IGFBP-3 levels. Hz mice presented a significant decrease of IGF-1 gene expression in related organs (liver, bone, testicles, and brain) while IGF-1 receptor showed a normal expression. However, gene expression of growth hormone receptor (GHR) was increased in the liver but reduced in the bone, testicles, and brain. In addition, a significant reduction of cortical bone thickness and histopathological alterations in the testicles were found in Hz mice when compared to controls. Finally, the lifelong evolution of IGF-1 serum levels showed significant differences throughout life until aging in mice. Results in this paper provide evidence for considering heterozygous mice as a suitable experimental model, from early stages, to get more insight into the mechanisms of the beneficial actions induced by IGF-1 replacement therapy.


IGF-1 IGF-1 receptor GH receptor Liver cirrhosis Laron syndrome GH/IGF-1 axis IGF-1 deficiency IGFBP-3 Gene expression Aging 



Body weight




Control group (wild-type mice)


Enzyme-linked immunosorbent assay


Glutamate–cysteine ligase catalytic subunit


Growth hormone


Growth hormone receptor


Heat shock protein 1B




Insulin-like growth factor-1


IGF-1 receptor


Insulin-like growth factor binding protein






  1. 1.
    Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD, Intrauterine Growth Retardation Study G (2003) IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 349:2211–2222. doi:10.1056/NEJMoa010107 PubMedCrossRefGoogle Scholar
  2. 2.
    Akanji AO, Smith RJ (2012) The insulin-like growth factor system, metabolic syndrome, and cardiovascular disease risk. Metab Syndr Relat Disord 10:3–13. doi:10.1089/met.2011.0083 PubMedCrossRefGoogle Scholar
  3. 3.
    Bailey-Downs LC, Mitschelen M, Sosnowska D, Toth P, Pinto JT, Ballabh P, Valcarcel-Ares MN, Farley J, Koller A, Henthorn JC, Bass C, Sonntag WE, Ungvari Z, Csiszar A (2012) Liver-specific knockdown of IGF-1 decreases vascular oxidative stress resistance by impairing the Nrf2-dependent antioxidant response: a novel model of vascular aging. J Gerontol A Biol Sci Med Sci 67:313–329. doi:10.1093/gerona/glr164 PubMedCrossRefGoogle Scholar
  4. 4.
    Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellve AR, Efstratiadis A (1996) Effects of an Igf1 gene null mutation on mouse reproduction. Mol Endocrinol 10:903–918PubMedGoogle Scholar
  5. 5.
    Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82PubMedCrossRefGoogle Scholar
  6. 6.
    Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995) Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14:717–730PubMedCrossRefGoogle Scholar
  7. 7.
    Caro JF, Poulos J, Ittoop O, Pories WJ, Flickinger EG, Sinha MK (1988) Insulin-like growth factor I binding in hepatocytes from human liver, human hepatoma, and normal, regenerating, and fetal rat liver. J Clin Invest 81:976–981. doi:10.1172/JCI113451 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Castilla-Cortazar I, Diez N, Garcia-Fernandez M, Puche JE, Diez-Caballero F, Quiroga J, Diaz-Sanchez M, Castilla A, Casares AD, Varela-Nieto I, Prieto J, Gonzalez-Baron S (2004) Hematotesticular barrier is altered from early stages of liver cirrhosis: effect of insulin-like growth factor 1. World J Gastroenterol 10:2529–2534PubMedGoogle Scholar
  9. 9.
    Castilla-Cortazar I, Garcia M, Muguerza B, Quiroga J, Perez R, Santidrian S, Prieto J (1997) Hepatoprotective effects of insulin-like growth factor I in rats with carbon tetrachloride-induced cirrhosis. Gastroenterology 113:1682–1691PubMedCrossRefGoogle Scholar
  10. 10.
    Castilla-Cortazar I, Garcia M, Quiroga J, Diez N, Diez-Caballero F, Calvo A, Diaz M, Prieto J (2000) Insulin-like growth factor-I reverts testicular atrophy in rats with advanced cirrhosis. Hepatology 31:592–600PubMedCrossRefGoogle Scholar
  11. 11.
    Castilla-Cortazar I, Picardi A, Tosar A, Ainzua J, Urdaneta E, Garcia M, Pascual M, Quiroga J, Prieto J (1999) Effect of insulin-like growth factor I on in vivo intestinal absorption of D-galactose in cirrhotic rats. Am J Physiol 276:G37–G42PubMedGoogle Scholar
  12. 12.
    Castilla-Cortazar I, Prieto J, Urdaneta E, Pascual M, Nunez M, Zudaire E, Garcia M, Quiroga J, Santidrian S (1997) Impaired intestinal sugar transport in cirrhotic rats: correction by low doses of insulin-like growth factor I. Gastroenterology 113:1180–1187PubMedCrossRefGoogle Scholar
  13. 13.
    Castilla-Cortazar I, Quiroga J, Prieto J (2000) Insulin-like growth factor-I, liver function, and hypogonadism in rats with experimentally induced cirrhosis. Hepatology 31:1379PubMedCrossRefGoogle Scholar
  14. 14.
    Cemborain A, Castilla-Cortazar I, Garcia M, Quiroga J, Muguerza B, Picardi A, Santidrian S, Prieto J (1998) Osteopenia in rats with liver cirrhosis: beneficial effects of IGF-I treatment. J Hepatol 28:122–131PubMedCrossRefGoogle Scholar
  15. 15.
    Conti E, Andreotti F, Sestito A, Riccardi P, Menini E, Crea F, Maseri A, Lanza GA (2002) Reduced levels of insulin-like growth factor-1 in patients with angina pectoris, positive exercise stress test, and angiographically normal epicardial coronary arteries. Am J Cardiol 89:973–975PubMedCrossRefGoogle Scholar
  16. 16.
    D'Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G (1996) The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 13:227–255. doi:10.1007/BF02740625 PubMedCrossRefGoogle Scholar
  17. 17.
    Efstratiadis G, Tsiaousis G, Athyros VG, Karagianni D, Pavlitou-Tsiontsi A, Giannakou-Darda A, Manes C (2006) Total serum insulin-like growth factor-1 and C-reactive protein in metabolic syndrome with or without diabetes. Angiology 57:303–311PubMedCrossRefGoogle Scholar
  18. 18.
    Flynn RS, Murthy KS, Grider JR, Kellum JM, Kuemmerle JF (2010) Endogenous IGF-I and alphaVbeta3 integrin ligands regulate increased smooth muscle hyperplasia in stricturing Crohn's disease. Gastroenterology 138:285–293. doi:10.1053/j.gastro.2009.09.003 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Gao WQ, Shinsky N, Ingle G, Beck K, Elias KA, Powell-Braxton L (1999) IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment. J Neurobiol 39:142–152PubMedCrossRefGoogle Scholar
  20. 20.
    Garcia-Fernandez M, Castilla-Cortazar I, Diaz-Sanchez M, Navarro I, Puche JE, Castilla A, Casares AD, Clavijo E, Gonzalez-Baron S (2005) Antioxidant effects of insulin-like growth factor-I (IGF-I) in rats with advanced liver cirrhosis. BMC Gastroenterol 5:7. doi:10.1186/1471-230X-5-7 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Garcia-Fernandez M, Delgado G, Puche JE, Gonzalez-Baron S, Castilla Cortazar I (2008) Low doses of insulin-like growth factor I improve insulin resistance, lipid metabolism, and oxidative damage in aging rats. Endocrinology 149:2433–2442. doi:10.1210/en.2007-1190 PubMedCrossRefGoogle Scholar
  22. 22.
    Giudice LC (1995) The insulin-like growth factor system in normal and abnormal human ovarian follicle development. Am J Med 98:48S–54SPubMedCrossRefGoogle Scholar
  23. 23.
    Hankenson FC, Garzel LM, Fischer DD, Nolan B, Hankenson KD (2008) Evaluation of tail biopsy collection in laboratory mice (Mus musculus): vertebral ossification, DNA quantity, and acute behavioral responses. J Am Assoc Lab Anim Sci 47:10–18PubMedCentralPubMedGoogle Scholar
  24. 24.
    Laron Z (1999) Laron syndrome—primary growth hormone resistance. In: Jameson JL (ed) Hormone resistance syndromes. Contemporary endocrinology. Humana Press, Totowa, pp 17–37CrossRefGoogle Scholar
  25. 25.
    Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72PubMedGoogle Scholar
  26. 26.
    Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229:141–162. doi:10.1006/dbio.2000.9975 PubMedCrossRefGoogle Scholar
  27. 27.
    McAlarney ME, Rizos M, Rocca EG, Nicolay OF, Efstratiadis S (2001) The quantitative and qualitative analysis of the craniofacial skeleton of mice lacking the IGF-I gene. Clin Orthod Res 4:206–219PubMedCrossRefGoogle Scholar
  28. 28.
    Mirpuri E, Garcia-Trevijano ER, Castilla-Cortazar I, Berasain C, Quiroga J, Rodriguez-Ortigosa C, Mato JM, Prieto J, Avila MA (2002) Altered liver gene expression in CCl4-cirrhotic rats is partially normalized by insulin-like growth factor-I. Int J Biochem Cell Biol 34:242–252PubMedCrossRefGoogle Scholar
  29. 29.
    Mitchell JD, Wokke JH, Borasio GD (2007) Recombinant human insulin-like growth factor I (rhIGF-I) for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev: CD002064. doi: 10.1002/14651858.CD002064.pub2
  30. 30.
    Muguerza B, Castilla-Cortazar I, Garcia M, Quiroga J, Santidrian S, Prieto J (2001) Antifibrogenic effect in vivo of low doses of insulin-like growth factor-I in cirrhotic rats. Biochim Biophys Acta 1536:185–195PubMedCrossRefGoogle Scholar
  31. 31.
    Murillo-Cuesta S, Rodriguez-de la Rosa L, Cediel R, Lassaletta L, Varela-Nieto I (2011) The role of insulin-like growth factor-I in the physiopathology of hearing. Front Mol Neurosci 4:11. doi:10.3389/fnmol.2011.00011 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    National Institutes of Health (1991) Preparation and maintenance of higher mammals during neuroscience experiments. NIH Publication No. 91–3207. Bethesda: NIH/National Eye InstituteGoogle Scholar
  33. 33.
    Ohlsson C, Mohan S, Sjogren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535. doi:10.1210/er.2009-0010 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Pascual M, Castilla-Cortazar I, Urdaneta E, Quiroga J, Garcia M, Picardi A, Prieto J (2000) Altered intestinal transport of amino acids in cirrhotic rats: the effect of insulin-like growth factor-I. Am J Physiol Gastrointest Liver Physiol 279:G319–G324PubMedGoogle Scholar
  35. 35.
    Payne JF, Tangpricha V, Cleveland J, Lynn MJ, Ray R, Srivastava SK (2011) Serum insulin-like growth factor-I in diabetic retinopathy. Mol Vis 17:2318–2324PubMedCentralPubMedGoogle Scholar
  36. 36.
    Perez R, Garcia-Fernandez M, Diaz-Sanchez M, Puche JE, Delgado G, Conchillo M, Muntane J, Castilla-Cortazar I (2008) Mitochondrial protection by low doses of insulin-like growth factor-I in experimental cirrhosis. World J Gastroenterol 14:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Picardi A, de Oliveira AC, Muguerza B, Tosar A, Quiroga J, Castilla-Cortazar I, Santidrian S, Prieto J (1997) Low doses of insulin-like growth factor-I improve nitrogen retention and food efficiency in rats with early cirrhosis. J Hepatol 26:191–202PubMedCrossRefGoogle Scholar
  38. 38.
    Puche JE, Castilla-Cortazar I (2012) Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 10:224. doi:10.1186/1479-5876-10-224 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Puche JE, Garcia-Fernandez M, Muntane J, Rioja J, Gonzalez-Baron S, Castilla Cortazar I (2008) Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology 149:2620–2627. doi:10.1210/en.2007-1563 PubMedCrossRefGoogle Scholar
  40. 40.
    Rio D, Ares MJ, Hannon G, Nilsen T (2010) Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 6:prot5439CrossRefGoogle Scholar
  41. 41.
    Rubin CD, Reed B, Sakhaee K, Pak CY (1994) Treating a patient with the Werner syndrome and osteoporosis using recombinant human insulin-like growth factor. Ann Intern Med 121:665–668PubMedCrossRefGoogle Scholar
  42. 42.
    Setia S, Sridhar MG (2009) Changes in GH/IGF-1 axis in intrauterine growth retardation: consequences of fetal programming? Horm Metab Res 41:791–798. doi:10.1055/s-0029-1231026 PubMedCrossRefGoogle Scholar
  43. 43.
    Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG, Jansson JO, Ohlsson C (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci U S A 96:7088–7092PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Svensson J, Sjogren K, Faldt J, Andersson N, Isaksson O, Jansson JO, Ohlsson C (2011) Liver-derived IGF-I regulates mean life span in mice. PLoS One 6:e22640. doi:10.1371/journal.pone.0022640 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Switzer M, Rice J, Rice M, Hardin DS (2009) Insulin-like growth factor-I levels predict weight, height and protein catabolism in children and adolescents with cystic fibrosis. J Pediatr Endocrinol Metab 22:417–424PubMedGoogle Scholar
  46. 46.
    Torres-Aleman I (2007) Targeting insulin-like growth factor-1 to treat Alzheimer's disease. Expert Opin Ther Targets 11:1535–1542. doi:10.1517/14728222.11.12.1535 PubMedCrossRefGoogle Scholar
  47. 47.
    Tutau F, Rodriguez-Ortigosa C, Puche JE, Juanarena N, Monreal I, Garcia Fernandez M, Clavijo E, Castilla A, Castilla-Cortazar I (2009) Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis. Liver Int 29:37–46. doi:10.1111/j.1478-3231.2008.01770.x PubMedCrossRefGoogle Scholar
  48. 48.
    Ungvari Z, Csiszar A (2012) The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 67:599–610. doi:10.1093/gerona/gls072 PubMedCrossRefGoogle Scholar
  49. 49.
    Woods KA, Camacho-Hubner C, Savage MO, Clark AJ (1996) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 335:1363–1367. doi:10.1056/NEJM199610313351805 PubMedCrossRefGoogle Scholar
  50. 50.
    Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A 96:7324–7329PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Ye P, Li L, Richards RG, DiAugustine RP, D'Ercole AJ (2002) Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 22:6041–6051PubMedGoogle Scholar

Copyright information

© University of Navarra 2013

Authors and Affiliations

  • I. Castilla-Cortazar
    • 1
    • 2
  • L. Guerra
    • 1
  • J. E. Puche
    • 1
  • U. Muñoz
    • 1
  • R. Barhoum
    • 1
  • E. Escudero
    • 1
  • J. L. Lavandera
    • 1
  1. 1.Institute of Applied Molecular Medicine (IMMA), Department of Medical Physiology, School of MedicineUniversidad CEU San PabloMadridSpain
  2. 2.School of MedicineUniversidad CEU San PabloMadridSpain

Personalised recommendations