Journal of Physiology and Biochemistry

, Volume 70, Issue 1, pp 107–115 | Cite as

Increase of pro-oxidants with no evidence of lipid peroxidation in exhaled breath condensate after a 10-km race in non-athletes

  • O. F. AranedaEmail author
  • R. Urbina-Stagno
  • M. Tuesta
  • D. Haichelis
  • M. Alvear
  • M. P. Salazar
  • C. García
Original Paper


It is a well-established fact that exercise increases pro-oxidants and favors oxidative stress; however, this phenomenon has been poorly studied in human lungs. Pro-oxidative generation (H2O2, NO2 ), lipid peroxidation markers (MDA), and inflammation (pH) in exhaled breath condensate (EBC) have been determined through data from 10 active subjects who ran 10 km; samples were obtained immediately before, at 20, and at 80 min post-exertion. In EBC, the concentration of H2O2 at 80 min post-exertion was increased. NO2 concentration showed a tendency to increase at 80 min post-exertion, with no variations in MDA and pH. No variations of NO2 were found in plasma, while there was an increase of NO2 at 80 min post-exertion in the relation between EBC and plasma. NO2 in EBC did not correlate to plasmatic NO2 , while it did correlate directly with H2O2 in EBC, suggesting a localized origin for the exercise-related NO2 increase in EBC. MDA in plasma did not increase nor correlate with MDA in EBC. In conclusion, high-intensity exercise increases lung-originated pro-oxidants in non-athlete subjects with no evidence of early lipid peroxidation and changes in the pH value in EBC.


Exhaled breath condensate Runners Lung oxidative stress Lung inflammation 



We acknowledge Mr. Luis Pizarro Zúñiga for his technical assistance in sample collection and chemical analysis of the samples.


  1. 1.
    Araneda OF, Garcia C, Lagos N, Quiroga G, Cajigal J, Salazar MP, Behn C (2005) Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness. Eur J Appl Physiol 95:383–390PubMedCrossRefGoogle Scholar
  2. 2.
    Araneda OF, Salazar MP (2009) Design and evaluation of a device for collecting exhaled breath condensate. J Bras Pneumol 35:69–72CrossRefGoogle Scholar
  3. 3.
    Araneda OF, Guevara AJ, Contreras C, Lagos N, Berral FJ (2012) Exhaled breath condensate analysis after long distance races. Int J Sports Med 33:955–961PubMedCrossRefGoogle Scholar
  4. 4.
    Asami S, Hirano T, Yamaguchi R, Tsurudome Y, Itoh H, Kasai H (1998) Effects of forced and spontaneous exercise on 8-hydroxydeoxyguanosine levels in rat organs. Biochem Biophys Res Commun 243:678–682PubMedCrossRefGoogle Scholar
  5. 5.
    Bloomer RJ, Canale RE, Blankenship MM, Fisher-Wellman KH (2010) Effect of Ambrotose AO(R) on resting and exercise-induced antioxidant capacity and oxidative stress in healthy adults. Nutr J 9:49PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bonsignore MR, Morici G, Riccobono L, Insalaco G, Bonanno A, Profita M, Paterno A, Vassalle C, Mirabella A, Vignola AM (2001) Airway inflammation in nonasthmatic amateur runners. Am J Physiol Lung Cell Mol Physiol 281:L668–L676PubMedGoogle Scholar
  7. 7.
    Brooks SV, Vasilaki A, Larkin LM, McArdle A, Jackson MJ (2008) Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor κB activation. J Physiol 586:3979–3990PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bryan NS (2006) Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med 41:691–701PubMedCrossRefGoogle Scholar
  9. 9.
    Cathcart MP, Love S, Sutton DG, Reardon RJ, Hughes KJ (2013) The application of exhaled breath analysis in racing thoroughbreds and the influence of high intensity exercise and ambient temperature on the concentration of carbon monoxide and pH in exhaled breath. Vet J. doi: 10.1016/j.tvjl.2012.12.022 PubMedGoogle Scholar
  10. 10.
    Cuzzolin L, Lussignoli S, Crivellente F, Adami A, Schena F, Bellavite P, Brocco G, Benoni G (2000) Influence of an acute exercise on neutrophil and platelet adhesion, nitric oxide plasma metabolites in inactive and active subjects. Int J Sports Med 21:289–293PubMedCrossRefGoogle Scholar
  11. 11.
    Denguezli M, Ben Chiekh I, Ben Saad H, Zaouali-Ajina M, Tabka Z, Abdelkrim Z (2008) One-year endurance training: effects on lung function and airway inflammation. J Sports Sci 26:1351–1359PubMedCrossRefGoogle Scholar
  12. 12.
    Fatouros IG, Chatzinikolaou A, Douroudos II, Nikolaidis MG, Kyparos A, Margonis K, Michailidis Y, Vantarakis A, Taxildaris K, Katrabasas I, Mandalidis D, Kouretas D, Jamurtas AZ (2010) Time-course of changes in oxidative stress and antioxidant status responses following a soccer game. J Strength Cond Res 24:3278–3286PubMedCrossRefGoogle Scholar
  13. 13.
    Ferdinands JM, Crawford CA, Greenwald R, Van Sickle D, Hunter E, Teague WG (2008) Breath acidification in adolescent runners exposed to atmospheric pollution: a prospective, repeated measures observational study. Environ Health 7:10PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Font-Ribera L, Kogevinas M, Zock JP, Gomez FP, Barreiro E, Nieuwenhuijsen MJ, Fernandez P, Lourencetti C, Perez-Olabarria M, Bustamante M, Marcos R, Grimalt JO, Villanueva CM (2010) Short-term changes in respiratory biomarkers after swimming in a chlorinated pool. Environ Health Perspect 118:1538–1544PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Gay CA, Gebicki JM (2002) Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal Biochem 304:42–46PubMedCrossRefGoogle Scholar
  16. 16.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138PubMedCrossRefGoogle Scholar
  17. 17.
    Heinicke I, Boehler A, Rechsteiner T, Bogdanova A, Jelkmann W, Hofer M, Rawlings P, Araneda OF, Behn C, Gassmann M, Heinicke K (2009) Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate. Eur J Appl Physiol 106:599–604PubMedCrossRefGoogle Scholar
  18. 18.
    Hoffmeyer F, Raulf-Heimsoth M, Bruning T (2009) Exhaled breath condensate and airway inflammation. Curr Opin Allergy Clin Immunol 9:16–22PubMedCrossRefGoogle Scholar
  19. 19.
    Hunt JF, Erwin E, Palmer L, Vaughan J, Malhotra N, Platts-Mills TA, Gaston B (2002) Expression and activity of pH-regulatory glutaminase in the human airway epithelium. Am J Respir Crit Care Med 165:101–107PubMedCrossRefGoogle Scholar
  20. 20.
    Hunt J (2007) Exhaled breath condensate pH assays. Immunol Allergy Clin North Am 27:597–606PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ji LL (2008) Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med 44:142–152PubMedCrossRefGoogle Scholar
  22. 22.
    Kippelen P, Fitch KD, Anderson SD, Bougault V, Boulet LP, Rundell KW, Sue-Chu M, McKenzie DC (2012) Respiratory health of elite athletes—preventing airway injury: a critical review. Br J Sports Med 46:471–476PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Larstad M, Ljungkvist G, Olin AC, Toren K (2002) Determination of malondialdehyde in breath condensate by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 766:107–114PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SK, Kim CS, Kim HS, Cho EJ, Joo HK, Lee JY, Lee EJ, Park JB, Jeon BH (2009) Endothelial nitric oxide synthase activation contributes to post-exercise hypotension in spontaneously hypertensive rats. Biochem Biophys Res Commun 382:711–714PubMedCrossRefGoogle Scholar
  25. 25.
    Marek E, Platen P, Volke J, Muckenhoff K, Marek W (2009) Hydrogen peroxide release and acid–base status in exhaled breath condensate at rest and after maximal exercise in young, healthy subjects. Eur J Med Res 14:134–139PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mercken EM, Hageman GJ, Schols AM, Akkermans MA, Bast A, Wouters EF (2005) Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172:994–1001PubMedCrossRefGoogle Scholar
  27. 27.
    Mickleborough TD, Vaughn CL, Shei RJ, Davis EM, Wilhite DP (2013) Marine lipid fraction PCSO-524™ (lyprinol(®)/omega XL(®)) of the New Zealand green lipped mussel attenuates hyperpnea-induced bronchoconstriction in asthma. Respir Med 107:1152–1163PubMedCrossRefGoogle Scholar
  28. 28.
    Nieman DC, Konrad M, Henson DA, Kennerly K, Shanely RA, Wallner-Liebmann SJ (2012) Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity. J Interferon Cytokine Res 32:12–17PubMedCrossRefGoogle Scholar
  29. 29.
    Niess AM, Sommer M, Schlotz E, Northoff H, Dickhuth HH, Fehrenbach E (2000) Expression of the inducible nitric oxide synthase (iNOS) in human leukocytes: responses to running exercise. Med Sci Sports Exerc 32:1220–1225PubMedCrossRefGoogle Scholar
  30. 30.
    Nikolaidis MG, Jamurtas AZ (2009) Blood as a reactive species generator and redox status regulator during exercise. Arch Biochem Biophys 490:77–84PubMedCrossRefGoogle Scholar
  31. 31.
    Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation–xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409PubMedCrossRefGoogle Scholar
  32. 32.
    Nowak D, Kalucka S, Bialasiewicz P, Krol M (2001) Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. Free Radic Biol Med 30:178–186PubMedCrossRefGoogle Scholar
  33. 33.
    Paget-Brown AO, Ngamtrakulpanit L, Smith A, Bunyan D, Hom S, Nguyen A, Hunt JF (2006) Normative data for pH of exhaled breath condensate. Chest 129:426–430PubMedCrossRefGoogle Scholar
  34. 34.
    Pinho RA, Chiesa D, Mezzomo KM, Andrades ME, Bonatto F, Gelain D, Dal Pizzol F, Knorst MM, Moreira JC (2007) Oxidative stress in chronic obstructive pulmonary disease patients submitted to a rehabilitation program. Respir Med 101:1830–1835PubMedCrossRefGoogle Scholar
  35. 35.
    Poveda JJ, Riestra A, Salas E, Cagigas ML, Lopez-Somoza C, Amado JA, Berrazueta JR (1997) Contribution of nitric oxide to exercise-induced changes in healthy volunteers: effects of acute exercise and long-term physical training. Eur J Clin Invest 27:967–971PubMedCrossRefGoogle Scholar
  36. 36.
    Radak Z, Nakamura A, Nakamoto H, Asano K, Ohno H, Goto S (1998) A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Pflugers Arch 435:439–441PubMedCrossRefGoogle Scholar
  37. 37.
    Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44:153–159PubMedCrossRefGoogle Scholar
  38. 38.
    Reddy KV, Kumar TC, Prasad M, Reddanna P (1998) Pulmonary lipid peroxidation and antioxidant defenses during exhaustive physical exercise: the role of vitamin E and selenium. Nutrition 14:448–451PubMedCrossRefGoogle Scholar
  39. 39.
    Riediker M, Danuser B (2007) Exhaled breath condensate pH is increased after moderate exercise. J Aerosol Med 20:13–18PubMedCrossRefGoogle Scholar
  40. 40.
    Senturk UK, Yalcin O, Gunduz F, Kuru O, Meiselman HJ, Baskurt OK (2005) Effect of antioxidant vitamin treatment on the time course of hematological and hemorheological alterations after an exhausting exercise episode in human subjects. J Appl Physiol 98:1272–1279PubMedCrossRefGoogle Scholar
  41. 41.
    Sue-Chu M, Larsson L, Moen T, Rennard SI, Bjermer L (1999) Bronchoscopy and bronchoalveolar lavage findings in cross-country skiers with and without “ski asthma”. Eur Respir J 13:626–632PubMedCrossRefGoogle Scholar
  42. 42.
    Sue-Chu M, Brannan JD, Anderson SD, Chew N, Bjermer L (2010) Airway hyperresponsiveness to methacholine, adenosine 5-monophosphate, mannitol, eucapnic voluntary hyperpnoea and field exercise challenge in elite cross-country skiers. Br J Sports Med 44:827–832PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sue-Chu M (2012) Winter sports athletes: long-term effects of cold air exposure. Br J Sports Med 46:397–401PubMedCrossRefGoogle Scholar
  44. 44.
    Sugiura H, Ichinose M (2011) Nitrative stress in inflammatory lung diseases. Nitric Oxide 25:138–144PubMedCrossRefGoogle Scholar
  45. 45.
    Verges S, Flore P, Favre-Juvin A, Lévy P, Wuyam B (2005) Exhaled nitric oxide during normoxic and hypoxic exercise in endurance athletes. Acta Physiol Scand 185:123–131PubMedCrossRefGoogle Scholar
  46. 46.
    Veszelovsky E, Holford NH, Thomsen LL, Knowles RG, Baguley BC (1995) Plasma nitrate clearance in mice: modeling of the systemic production of nitrate following the induction of nitric oxide synthesis. Cancer Chemother Pharmacol 36:155–159PubMedCrossRefGoogle Scholar
  47. 47.
    Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, Rogers CJ, Northoff H, Abbasi A, Simon P (2011) Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 17:6–63PubMedGoogle Scholar

Copyright information

© University of Navarra 2013

Authors and Affiliations

  • O. F. Araneda
    • 1
    Email author
  • R. Urbina-Stagno
    • 2
  • M. Tuesta
    • 3
  • D. Haichelis
    • 2
  • M. Alvear
    • 4
  • M. P. Salazar
    • 2
  • C. García
    • 2
  1. 1.Laboratorio Integrativo de Biomecánica y Fisiología del Esfuerzo (LIBFE), Escuela de Kinesiología, Facultad de MedicinaUniversidad de los AndesSantiagoChile
  2. 2.Fundación para la Investigación de las Ciencias Ambientales y Humanas (FICAH)SantiagoChile
  3. 3.Laboratorio de Fisiología del Ejercicio, Escuela de KinesiologíaUniversidad Santo Tomás sede Viña del MarViña del MarChile
  4. 4.Laboratorio de KinesiologíaUniversidad del DesarrolloSantiagoChile

Personalised recommendations