Advertisement

Journal of Physiology and Biochemistry

, Volume 69, Issue 2, pp 199–205 | Cite as

Hypercalcemia induces a proinflammatory phenotype in rat leukocytes and endothelial cells

  • Nikolina Režić-Mužinić
  • Vedrana Čikeš-Čulić
  • Joško Božić
  • Tina Tičinović-Kurir
  • Ilza Salamunić
  • Anita MarkotićEmail author
Original Paper

Abstract

Endothelial plasma membrane lipid microdomains, so called lipid rafts/caveolae, are rich in neutral glycosphingolipid, globotriaosylceramide, Gb3Cer, or CD77. Several plasma membrane Ca2+ channels and pumps are located in lipid rafts/caveolae. Increased Ca2+ influx could cause the development of an endothelial proinflammatory phenotype. Therefore, the aim of this study was to estimate the effects of hypercalcemia in rats by determination of CD77 expression on CD34+ endothelial cells in the heart, kidney, and vena cava. In addition, potential proinflammatory calcium effect was estimated by CD11b and CD15s expression on leukocytes. To achieve hypercalcemia, Sprague–Dawley male rats were given CaCl2 solution with a concentration of 1.5 % elemental calcium during 14 days. CD77 expression on CD34+ endothelial cells in cell suspensions of the heart, kidney, and vena cava, as well as leukocyte expression of CD11b and CD15s in hypercalcemic and control rats were determined by flow cytometry. Ionized calcium concentration in plasma was 1.37 ± 0.01 mM in hypercalcemic vs. 1.19 ± 0.03 mM in control rats. Hypercalcemic group showed statistically significantly decreased proportion of endothelial CD34+ CD77− cells in the kidney and vena cava in parallel with increase of CD11b and CD15s leukocyte proinflammatory markers. In conclusion, it is tempting to speculate that plasma membranes of glycosphingolipid CD77− endothelial cells are poorer in caveolae lipid microdomains and therefore weaker in controlling of Ca2+ influx. The percentage of CD11b+ CD15s+ leukocytes could be a measure of proinflammatory effects of mild hypercalcemia.

Keywords

Endothelial cells Leukocytes Rat Proinflammatory markers 

Notes

Acknowledgments

Data shown resulted from scientific project “Pathobiochemistry of glycosphingolipid antigens” (supported by Ministry of Science, Education and Sports, Republic of Croatia).

References

  1. 1.
    Almqvist EG, Bondeson AG, Bondeson L, Svensson J (2011) Increased markers of inflammation and endothelial dysfunction in patients with mild primary hyperparathyroidism. Scand J Clin Lab Invest 71:139–144PubMedGoogle Scholar
  2. 2.
    Bauwens A, Bielaszewska M, Kemper B, Langehanenberg P, von Bally G, Reichelt R, Mulac D, Humpf HU, Friedrich AW, Kim KS, Karch H, Muthing J (2011) Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb Haemost 105:515–528PubMedCrossRefGoogle Scholar
  3. 3.
    Betz J, Bielaszewska M, Thies A, Humpf HU, Dreisewerd K, Karch H, Kim KS, Friedrich AW, Muthing J (2011) Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. J Lipid Res 52:618–634PubMedCrossRefGoogle Scholar
  4. 4.
    Binder FP, Ernst B (2011) E- and P-selectin: differences, similarities and implications for the design of P-selectin antagonists. Chimia (Aarau) 65:210–213CrossRefGoogle Scholar
  5. 5.
    Body JJ, Bergmann P, Boonen S, Devogelaer JP, Gielen E, Goemaere S, Kaufman JM, Rozenberg S, Reginster JY (2012) Extraskeletal benefits and risks of calcium, vitamin D and anti-osteoporosis medications. Osteoporos Int 23(Suppl 1):S1–23PubMedCrossRefGoogle Scholar
  6. 6.
    Bose S, French S, Evans FJ, Joubert F, Balaban RS (2003) Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem 278:39155–39165PubMedCrossRefGoogle Scholar
  7. 7.
    Caballero L, Climent V, Hernandez-Romero D, Quintanilla MA, de la Morena G, Marin F (2010) Enzyme replacement therapy in Fabry disease: influence on cardiac manifestations. Curr Med Chem 17:1679–1689PubMedCrossRefGoogle Scholar
  8. 8.
    Chen A, Dong L, Leffler NR, Asch AS, Witte ON, Yang LV (2011) Activation of GPR4 by acidosis increases endothelial cell adhesion through the cAMP/Epac pathway. PLoS One 6:e27586PubMedCrossRefGoogle Scholar
  9. 9.
    Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11:206–213PubMedCrossRefGoogle Scholar
  10. 10.
    Di Marco GS, Hausberg M, Hillebrand U, Rustemeyer P, Wittkowski W, Lang D, Pavenstadt H (2008) Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Renal Physiol 294:F1381–1387PubMedCrossRefGoogle Scholar
  11. 11.
    Dodelet-Devillers A, Cayrol R, van Horssen J, Haqqani AS, de Vries HE, Engelhardt B, Greenwood J, Prat A (2009) Functions of lipid raft membrane microdomains at the blood–brain barrier. J Mol Med (Berl) 87:765–774CrossRefGoogle Scholar
  12. 12.
    Ellam TJ, Chico TJ (2012) Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis 220:310–318PubMedCrossRefGoogle Scholar
  13. 13.
    Etulain J, Negrotto S, Carestia A, Pozner RG, Romaniuk MA, D’Atri LP, Klement GL, Schattner M (2012) Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. Thromb Haemost 107:99–110PubMedCrossRefGoogle Scholar
  14. 14.
    Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 23:1161–1168PubMedCrossRefGoogle Scholar
  15. 15.
    Glavas D, Markotic A, Valic Z, Kovacic N, Palada I, Martinic R, Breskovic T, Bakovic D, Brubakk AO, Dujic Z (2008) Expression of endothelial selectin ligands on human leukocytes following dive. Exp Biol Med (Maywood) 233:1181–1188CrossRefGoogle Scholar
  16. 16.
    Higuchi K, Yoshimitsu M, Fan X, Guo X, Rasaiah VI, Yen J, Tei C, Takenaka T, Medin JA (2010) Alpha-galactosidase A-Tat fusion enhances storage reduction in hearts and kidneys of Fabry mice. Mol Med 16:216–221PubMedCrossRefGoogle Scholar
  17. 17.
    Katayama Y, Hidalgo A, Chang J, Peired A, Frenette PS (2005) CD44 is a physiological E-selectin ligand on neutrophils. J Exp Med 201:1183–1189PubMedCrossRefGoogle Scholar
  18. 18.
    Kirkeby S, Moe D, Claesson MH (1998) Galalpha1→4Gal-glycans are expressed on myofibrillar associated proteins. Cell Tissue Res 293:285–291PubMedCrossRefGoogle Scholar
  19. 19.
    Kosch M, Hausberg M, Vormbrock K, Kisters K, Gabriels G, Rahn KH, Barenbrock M (2000) Impaired flow-mediated vasodilation of the brachial artery in patients with primary hyperparathyroidism improves after parathyroidectomy. Cardiovasc Res 47:813–818PubMedCrossRefGoogle Scholar
  20. 20.
    Kovacic JC, Randolph GJ (2011) Vascular calcification: harder than it looks. Arterioscler Thromb Vasc Biol 31:1249–1250PubMedCrossRefGoogle Scholar
  21. 21.
    Kuijpers TW, Hoogerwerf M, van der Laan LJ, Nagel G, van der Schoot CE, Grunert F, Roos D (1992) CD66 nonspecific cross-reacting antigens are involved in neutrophil adherence to cytokine-activated endothelial cells. J Cell Biol 118:457–466PubMedCrossRefGoogle Scholar
  22. 22.
    Kuro-o M (2010) A potential link between phosphate and aging—lessons from Klotho-deficient mice. Mech Ageing Dev 131:270–275PubMedCrossRefGoogle Scholar
  23. 23.
    Levinovitz A, Muhlhoff J, Isenmann S, Vestweber D (1993) Identification of a glycoprotein ligand for E-selectin on mouse myeloid cells. J Cell Biol 121:449–459PubMedCrossRefGoogle Scholar
  24. 24.
    Liu F, Huang J, Sadler JE (2011) Shiga toxin (Stx)1B and Stx2B induce von Willebrand factor secretion from human umbilical vein endothelial cells through different signaling pathways. Blood 118:3392–3398PubMedCrossRefGoogle Scholar
  25. 25.
    Maemura K, Fukuda M (1992) Poly-N-acetyllactosaminyl O-glycans attached to leukosialin. The presence of sialyl Le(x) structures in O-glycans. J Biol Chem 267:24379–24386PubMedGoogle Scholar
  26. 26.
    Muthing J, Schweppe CH, Karch H, Friedrich AW (2009) Shiga toxins, glycosphingolipid diversity, and endothelial cell injury. Thromb Haemost 101:252–264PubMedGoogle Scholar
  27. 27.
    Ohmi K, Kiyokawa N, Takeda T, Fujimoto J (1998) Human microvascular endothelial cells are strongly sensitive to Shiga toxins. Biochem Biophys Res Commun 251:137–141PubMedCrossRefGoogle Scholar
  28. 28.
    Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633PubMedCrossRefGoogle Scholar
  29. 29.
    Park S, Kim JA, Joo KY, Choi S, Choi EN, Shin JA, Han KH, Jung SC, Suh SH (2011) Globotriaosylceramide leads to K(Ca)3.1 channel dysfunction: a new insight into endothelial dysfunction in Fabry disease. Cardiovasc Res 89:290–299PubMedCrossRefGoogle Scholar
  30. 30.
    Patel KD, Moore KL, Nollert MU, McEver RP (1995) Neutrophils use both shared and distinct mechanisms to adhere to selectins under static and flow conditions. J Clin Invest 96:1887–1896PubMedCrossRefGoogle Scholar
  31. 31.
    Picker LJ, Warnock RA, Burns AR, Doerschuk CM, Berg EL, Butcher EC (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66:921–933PubMedCrossRefGoogle Scholar
  32. 32.
    Puerro Vicente M, Hernandez Garcia R, Aleixandre A, de Artinano M (1993) Comparative study of different methods of inducing acute and chronic hypercalcemia in rats. Methods Find Exp Clin Pharmacol 15:281–290PubMedGoogle Scholar
  33. 33.
    Rashid G, Bernheim J, Green J, Benchetrit S (2007) Parathyroid hormone stimulates endothelial expression of atherosclerotic parameters through protein kinase pathways. Am J Physiol Renal Physiol 292:F1215–1218PubMedCrossRefGoogle Scholar
  34. 34.
    Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P, Reiss K (2008) ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 102:1192–1201PubMedCrossRefGoogle Scholar
  35. 35.
    Schweppe CH, Bielaszewska M, Pohlentz G, Friedrich AW, Buntemeyer H, Schmidt MA, Kim KS, Peter-Katalinic J, Karch H, Muthing J (2008) Glycosphingolipids in vascular endothelial cells: relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity. Glycoconj J 25:291–304PubMedCrossRefGoogle Scholar
  36. 36.
    Shuto E, Taketani Y, Tanaka R, Harada N, Isshiki M, Sato M, Nashiki K, Amo K, Yamamoto H, Higashi Y, Nakaya Y, Takeda E (2009) Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol 20:1504–1512PubMedCrossRefGoogle Scholar
  37. 37.
    Tavora F, Kutys R, Li L, Ripple M, Fowler D, Burke A (2010) Adventitial lymphocytic inflammation in human coronary arteries with intimal atherosclerosis. Cardiovasc Pathol 19:e61–68PubMedCrossRefGoogle Scholar
  38. 38.
    Wu S, Jian MY, Xu YC, Zhou C, Al-Mehdi AB, Liedtke W, Shin HS, Townsley MI (2009) Ca2+ entry via alpha1G and TRPV4 channels differentially regulates surface expression of P-selectin and barrier integrity in pulmonary capillary endothelium. Am J Physiol Lung Cell Mol Physiol 297:L650–657PubMedCrossRefGoogle Scholar
  39. 39.
    Xiong Y, Antalffy G, Enyedi A, Strehler EE (2009) Apical localization of PMCA2w/b is lipid raft-dependent. Biochem Biophys Res Commun 384:32–36PubMedCrossRefGoogle Scholar
  40. 40.
    Zen K, Cui LB, Zhang CY, Liu Y (2007) Critical role of mac-1 sialyl lewis x moieties in regulating neutrophil degranulation and transmigration. J Mol Biol 374:54–63PubMedCrossRefGoogle Scholar
  41. 41.
    Zoja C, Buelli S, Morigi M (2010) Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol 25:2231–2240PubMedCrossRefGoogle Scholar

Copyright information

© University of Navarra 2012

Authors and Affiliations

  • Nikolina Režić-Mužinić
    • 1
  • Vedrana Čikeš-Čulić
    • 1
  • Joško Božić
    • 2
  • Tina Tičinović-Kurir
    • 3
  • Ilza Salamunić
    • 4
  • Anita Markotić
    • 1
    Email author
  1. 1.Department of Medical Chemistry and Biochemistry, School of MedicineUniversity of SplitSplitCroatia
  2. 2.Department of Physiology, School of MedicineUniversity of SplitSplitCroatia
  3. 3.Department of PathophysiologyUniversity Hospital SplitSplitCroatia
  4. 4.Department of Clinical Diagnostic LaboratoryUniversity Hospital SplitSplitCroatia

Personalised recommendations