Advertisement

Journal of Physiology and Biochemistry

, Volume 69, Issue 1, pp 155–163 | Cite as

Impact of leucine on energy balance

  • Liam McAllan
  • Paul D. Cotter
  • Helen M. Roche
  • Riitta Korpela
  • Kanishka N. NilaweeraEmail author
Review

Abstract

Body weight is determined by the balance between energy intake and energy expenditure. When energy intake exceeds energy expenditure, the surplus energy is stored as fat in the adipose tissue, which causes its expansion and may even lead to the development of obesity. Thus, there is a growing interest to develop dietary interventions that could reduce the current obesity epidemic. In this regard, data from a number of in vivo and in vitro studies suggest that the branched-chain amino acid leucine influences energy balance. However, this has not been consistently reported. Here, we review the literature related to the effects of leucine on energy intake, energy expenditure and lipid metabolism as well as its effects on the cellular activity in the brain (hypothalamus) and in peripheral tissues (gastro-intestinal tract, adipose tissue, liver and muscle) regulating the above physiological processes. Moreover, we discuss how obesity may influence the actions of this amino acid.

Keywords

Cholecystokinin Fatty acid synthase Glucagon-like peptide-1 Pro-opiomelanocortin 

Notes

Acknowledgments

The on-going work in the area of nutrient effects on energy balance is funded by Teagasc, Ireland. The authors have no conflicts of interest. Each author listed contributed by reviewing the literature and/or by critically reviewing the manuscript.

References

  1. 1.
    Arase K, York DA, Shimizu H et al (1988) Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am J Physiol 255:E255–E259PubMedGoogle Scholar
  2. 2.
    Azzara AV, Sokolnicki JP, Schwartz GJ (2002) Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition. Physiol Behav 77:411–416PubMedCrossRefGoogle Scholar
  3. 3.
    Backus RC, Howard KA, Rogers QR (1997) The potency of dietary amino acids in elevating plasma cholecystokinin immunoreactivity in cats is related to amino acid hydrophobicity. Regul Pept 72:31–40PubMedCrossRefGoogle Scholar
  4. 4.
    Balage M, Dardevet D (2010) Long-term effects of leucine supplementation on body composition. Curr Opin Clin Nutr 13:265–270CrossRefGoogle Scholar
  5. 5.
    Bartness TJ, Song CK (2007) Brain–adipose tissue neural crosstalk. Physiol Behav 91:343–351PubMedCrossRefGoogle Scholar
  6. 6.
    Bjorkman MP, Pilvi TK, Kekkonen RA et al (2011) Similar effects of leucine rich and regular dairy products on muscle mass and functions of older polymyalgia rheumatica patients: A randomized crossover trial. J Nutr Health Aging 15:462–467PubMedCrossRefGoogle Scholar
  7. 7.
    Blevins JE, Morton GJ, Williams DL et al (2009) Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. Am J Physiol Regul Integr Comp Physiol 296:R476–R484PubMedCrossRefGoogle Scholar
  8. 8.
    Blouet C, Jo YH, Li X et al (2009) Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus–brainstem circuit. J Neurosci 29:8302–8311PubMedCrossRefGoogle Scholar
  9. 9.
    Bong HY, Kim JY, Jeong HI et al (2010) Effects of corn gluten hydrolyzates, branched chain amino acids, and leucine on body weight reduction in obese rats induced by a high fat diet. Nutr Res Pract 4:106–113PubMedCrossRefGoogle Scholar
  10. 10.
    Bucinskaite V, Tolessa T, Pedersen J et al. (2009) Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroent Motil 21Google Scholar
  11. 11.
    Chen Q, Reimer RA (2009) Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 25:340–349PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng Y, Meng Q, Wang C et al (2010) Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue. Diabetes 59:17–25PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng Y, Zhang Q, Meng Q et al (2011) Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system. Mol Endocrinol 25:1624–1635PubMedCrossRefGoogle Scholar
  14. 14.
    Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578PubMedCrossRefGoogle Scholar
  15. 15.
    Cota D, Proulx K, Smith KA et al (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927–930PubMedCrossRefGoogle Scholar
  16. 16.
    Cowley MA, Smart JL, Rubinstein M et al (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484PubMedCrossRefGoogle Scholar
  17. 17.
    Cowley MA, Smith RG, Diano S et al (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37:649–661PubMedCrossRefGoogle Scholar
  18. 18.
    Cummings DE, Weigle DS, Frayo RS et al (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346:1623–1630PubMedCrossRefGoogle Scholar
  19. 19.
    Date Y, Kojima M, Hosoda H et al (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261PubMedCrossRefGoogle Scholar
  20. 20.
    Date Y, Murakami N, Toshinai K et al (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128PubMedCrossRefGoogle Scholar
  21. 21.
    Deschenes RJ, Lorenz LJ, Haun RS et al (1984) Cloning and sequence analysis of a cDNA-encoding rat preprocholecystokinin. P Natl Acad Sci-Biol 81:726–730CrossRefGoogle Scholar
  22. 22.
    Devkota S, Layman DK (2010) Protein metabolic roles in treatment of obesity. Curr Opin Clin Nutr 13:403–407CrossRefGoogle Scholar
  23. 23.
    Diraison F, Yankah V, Letexier D et al (2003) Differences in the regulation of adipose tissue and liver lipogenesis by carbohydrates in humans. J Lipid Res 44:846–853PubMedCrossRefGoogle Scholar
  24. 24.
    Donato J Jr, Pedrosa RG, Cruzat VF et al (2006) Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition 22:520–527PubMedCrossRefGoogle Scholar
  25. 25.
    Dube MG, Xu B, Crowley WR et al (1994) Evidence that neuropeptide Y is a physiological signal for normal food intake. Brain Res 646:341–344PubMedCrossRefGoogle Scholar
  26. 26.
    Egecioglu E, Stenstrom B, Pinnock SB et al (2008) Hypothalamic gene expression following ghrelin therapy to gastrectomized rodents. Regul Pept 146:176–182PubMedCrossRefGoogle Scholar
  27. 27.
    Enriori PJ, Evans AE, Sinnayah P et al (2007) Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 5:181–194PubMedCrossRefGoogle Scholar
  28. 28.
    Fan W, Boston BA, Kesterson RA et al (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168PubMedCrossRefGoogle Scholar
  29. 29.
    Gibbs J, Young RC, Smith GP (1973) Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245:323–325PubMedCrossRefGoogle Scholar
  30. 30.
    Gutzwiller JP, Goke B, Drewe J et al (1999) Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 44:81–86PubMedCrossRefGoogle Scholar
  31. 31.
    Hatakeyama Y, Sakata Y, Takakura S et al (2004) Acute and chronic effects of FR-149175, a beta(3)-adrenergic receptor agonist, on energy expenditure in Zucker fatty rats. Am J Physiol-Reg I 287:R336–R341CrossRefGoogle Scholar
  32. 32.
    Huang XF, Han M, South T et al (2003) Altered levels of POMC, AgRP and MC4-R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity. Brain Res 992:9–19PubMedCrossRefGoogle Scholar
  33. 33.
    Joseph SA, Michael GJ (1988) Efferent Acth-Ir opiocortin projections from nucleus tractus solitarius—a hypothalamic deafferentation study. Peptides 9:193–201PubMedCrossRefGoogle Scholar
  34. 34.
    Leenders M, Verdijk LB, van der Hoeven L et al (2011) Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr 141:1070–1076PubMedCrossRefGoogle Scholar
  35. 35.
    Li FN, Yin YL, Tan B et al (2011) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193PubMedCrossRefGoogle Scholar
  36. 36.
    Luckman SM, Lawrence CB (2003) Anorectic brainstem peptides: more pieces to the puzzle. Trends Endocrin Met 14:60–65CrossRefGoogle Scholar
  37. 37.
    Lynch CJ (2001) Role of leucine in the regulation of mTOR by amino acids: revelations from structure–activity studies. J Nutr 131:861S–865SPubMedGoogle Scholar
  38. 38.
    Macotela Y, Emanuelli B, Bang AM et al (2011) Dietary leucine—an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6:e21187PubMedCrossRefGoogle Scholar
  39. 39.
    Mano-Otagiri A, Iwasaki-Sekino A, Nemoto T et al (2010) Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regul Pept 160:81–90PubMedCrossRefGoogle Scholar
  40. 40.
    Mashiko S, Ishihara A, Iwaasa H et al (2007) A pair-feeding study reveals that a Y5 antagonist causes weight loss in diet-induced obese mice by modulating food intake and energy expenditure. Mol Pharmacol 71:602–608PubMedCrossRefGoogle Scholar
  41. 41.
    Mizuno TM, Kleopoulos SP, Bergen HT et al (1998) Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 47:294–297PubMedCrossRefGoogle Scholar
  42. 42.
    Moran TH, Baldessarini AR, Salorio CF et al (1997) Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol 272:R1245–R1251PubMedGoogle Scholar
  43. 43.
    Nairizi A, She P, Vary TC et al (2009) Leucine supplementation of drinking water does not alter susceptibility to diet-induced obesity in mice. J Nutr 139:715–719PubMedCrossRefGoogle Scholar
  44. 44.
    Naslund E, Barkeling B, King N et al (1999) Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311PubMedCrossRefGoogle Scholar
  45. 45.
    Nilaweera KN, Giblin L, Ross RP (2010) Nutrient regulation of enteroendocrine cellular activity linked to cholecystokinin gene expression and secretion. J Physiol Biochem 66:85–92PubMedCrossRefGoogle Scholar
  46. 46.
    Noatsch A, Petzke KJ, Millrose MK et al. (2010) Body weight and energy homeostasis was not affected in C57BL/6 mice fed high whey protein or leucine-supplemented low-fat diets. Eur J NutrGoogle Scholar
  47. 47.
    Nogueiras R, Perez-Tilve D, Veyrat-Durebex C et al (2009) Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci 29:5916–5925PubMedCrossRefGoogle Scholar
  48. 48.
    Nogueiras R, Wiedmer P, Perez-Tilve D et al (2007) The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 117:3475–3488PubMedCrossRefGoogle Scholar
  49. 49.
    Norton LE, Layman DK, Bunpo P et al (2009) The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr 139:1103–1109PubMedCrossRefGoogle Scholar
  50. 50.
    Osaka T, Endo M, Yamakawa M et al (2005) Energy expenditure by intravenous administration of glucagon-like peptide-1 mediated by the lower brainstem and sympathoadrenal system. Peptides 26:1623–1631PubMedCrossRefGoogle Scholar
  51. 51.
    Pankevich DE, Teegarden SL, Hedin AD et al (2010) Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating. J Neurosci 30:16399–16407PubMedCrossRefGoogle Scholar
  52. 52.
    Qin LQ, Xun P, Bujnowski D et al (2011) Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. J Nutr 141:249–254PubMedCrossRefGoogle Scholar
  53. 53.
    Raposinho PD, Pierroz DD, Broqua P et al (2001) Chronic administration of neuropeptide Y into the lateral ventricle of C57BL/6 J male mice produces an obesity syndrome including hyperphagia, hyperleptinemia, insulin resistance, and hypogonadism. Mol Cell Endocrinol 185:195–204PubMedCrossRefGoogle Scholar
  54. 54.
    Richard CD, Tolle V, Low MJ (2011) Meal pattern analysis in neural-specific proopiomelanocortin-deficient mice. Eur J Pharmacol 660:131–138PubMedCrossRefGoogle Scholar
  55. 55.
    Ropelle ER, Pauli JR, Fernandes MF et al (2008) A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 57:594–605PubMedCrossRefGoogle Scholar
  56. 56.
    Roseberry AG, Liu H, Jackson AC et al (2004) Neuropeptide Y-mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice. Neuron 41:711–722PubMedCrossRefGoogle Scholar
  57. 57.
    Savastano DM, Covasa M (2005) Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats. J Nutr 135:1953–1959PubMedGoogle Scholar
  58. 58.
    Schelbert KB (2009) Comorbidities of obesity. Prim Care 36:271–285PubMedCrossRefGoogle Scholar
  59. 59.
    Seo S, Ju S, Chung H et al (2008) Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr J 55:867–874PubMedCrossRefGoogle Scholar
  60. 60.
    Sun X, Zemel MB (2007) Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids 42:297–305PubMedCrossRefGoogle Scholar
  61. 61.
    Suominen AH, Glimm DR, Tedesco D et al (1998) Intestinal nutrient-gene interaction: the effect of feed deprivation and refeeding on cholecystokinin and proglucagon gene expression. J Anim Sci 76:3104–3113PubMedGoogle Scholar
  62. 62.
    Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913PubMedCrossRefGoogle Scholar
  63. 63.
    Tucker JD, Dhanvantari S, Brubaker PL (1996) Proglucagon processing in islet and intestinal cell lines. Regul Pept 62:29–35PubMedCrossRefGoogle Scholar
  64. 64.
    van Loon LJC (2012) Leucine as a pharmaconutrient in health and disease. Curr Opin Clin Nutr 15:71–77CrossRefGoogle Scholar
  65. 65.
    Verhoeven S, Vanschoonbeek K, Verdijk LB et al (2009) Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr 89:1468–1475PubMedCrossRefGoogle Scholar
  66. 66.
    Vianna D, Resende GF, Torres-Leal FL et al (2012) Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition 28:182–189PubMedCrossRefGoogle Scholar
  67. 67.
    Walzem RL, Dillard CJ, German JB (2002) Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit Rev Food Sci Nutr 42:353–375PubMedCrossRefGoogle Scholar
  68. 68.
    Wren AM, Seal LJ, Cohen MA et al (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992PubMedCrossRefGoogle Scholar
  69. 69.
    Xu G, Li Y, An W et al (2009) Gastric mammalian target of rapamycin signaling regulates ghrelin production and food intake. Endocrinology 150:3637–3644PubMedCrossRefGoogle Scholar
  70. 70.
    Yasuda T, Masaki T, Kakuma T et al (2004) Hypothalamic melanocortin system regulates sympathetic nerve activity in brown adipose tissue. Exp Biol Med (Maywood) 229:235–239Google Scholar
  71. 71.
    Yin Y, Yao K, Liu Z et al (2010) Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs. Amino Acids 39:1477–1486PubMedCrossRefGoogle Scholar
  72. 72.
    Zeanandin G, Balage M, Schneider SM et al (2012) Differential effect of long-term leucine supplementation on skeletal muscle and adipose tissue in old rats: an insulin signaling pathway approach. Age (Dordr) 34:371–387CrossRefGoogle Scholar
  73. 73.
    Zhang Y, Guo K, LeBlanc RE et al (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56:1647–1654PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang YY, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homolog. Nature 372:425–432PubMedCrossRefGoogle Scholar

Copyright information

© University of Navarra 2012

Authors and Affiliations

  • Liam McAllan
    • 1
    • 2
  • Paul D. Cotter
    • 1
    • 3
  • Helen M. Roche
    • 4
  • Riitta Korpela
    • 5
  • Kanishka N. Nilaweera
    • 1
    Email author
  1. 1.Teagasc Food Research CentreCorkIreland
  2. 2.Department of Pharmacology and TherapeuticsUniversity College CorkCorkIreland
  3. 3.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland
  4. 4.UCD Conway Institute of Biomolecular & Biomedical Research, & UCD Institute of Food & HealthUniversity College DublinDublin 4Ireland
  5. 5.Institute of Biomedicine, Biomedicum HelsinkiUniversity of HelsinkiHelsinkiFinland

Personalised recommendations