Skip to main content
Log in

Decreased glutamine synthetase, increased citrulline–nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model

Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Akbar MT, Wells DJ, Latchman DS, de Belleroche J (2001) Heat shock protein 27 shows a distinctive widespread spatial and temporal pattern of induction in CNS glail and neuronal cells compared to heat shock protein 70 and caspase 3 following kainate administration. Brain Res Mol Brain Res 93:148–163

    Article  CAS  PubMed  Google Scholar 

  2. Alabadi J, Thibault JL, Pinard E, Seylaz J, Lasbennes F (1999) 7-Nitroindazole a selective inhibitor of nNOS increases hippocampal extracellular glutamate concentration in status epilepticus induced by kainic acid in rats. Brain Res 839:305–312

    Article  CAS  PubMed  Google Scholar 

  3. Barger SW, Goodwin ME, Porter MM, Beggs ML (2007) Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 101:1205–1213

    Article  CAS  PubMed  Google Scholar 

  4. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria, implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  CAS  PubMed  Google Scholar 

  5. Bidmon HJ, Gorg B, Palomero-Gallagher N, Schleicher A, Haussinger D, Speckmann EJ, Zilles K (2008) Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylenterazole model of epilepsy. Epilepsia 49:1733–1748

    Article  CAS  PubMed  Google Scholar 

  6. Bommarius AS, Makryaleas K, Drauz K (1991) An enzymatic route to l-ornithine from l-arginine–activation and stabilization studies on l-arginase. Biomed Biochim Acta 50:S249–S255

    CAS  PubMed  Google Scholar 

  7. Carriedo SG, Sensi SL, Yin HZ, Weiss JH (1998) Rapid Ca2+entry through Ca2+ permeable AMPa/kainite channels triggers marked intracellular Ca2+ rises and consequent oxygen radical production. J Neurosci 18:7727–7738

    CAS  PubMed  Google Scholar 

  8. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  CAS  PubMed  Google Scholar 

  9. Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowiski K, Stewart KN, Motafilipe H, Thiemermann C (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58:658–673

    Article  CAS  PubMed  Google Scholar 

  10. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate and neurodenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  11. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenisis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  Google Scholar 

  12. Frantseva MV, Perez Velzquez JL, Tsoraklidis G, Mendonca AJ, Adamchik Y, Mills LR, Carlen PL, Burnham MW (2000) Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435

    Article  CAS  PubMed  Google Scholar 

  13. Girard G, Giguere J-F, Butterworth RF (1993) Region selective reductions in activities of glutamine synthetase in rat brain following portacaval anastomosis. Metab Brain Dis 8:207–215

    Article  CAS  PubMed  Google Scholar 

  14. Guix FX, Uribesalgo M, Coma M, Munoz FJ (2005) The physiology and patophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152

    Article  CAS  PubMed  Google Scholar 

  15. Halestrap AP, Doran E, Gillespie JP, O’Toolee A (2000) Mitochondria and cell death. Biochem Soc Trans 28:170–177

    CAS  PubMed  Google Scholar 

  16. Herzfeld A, Raper SM (1976) The heterogeneity of arginase in rat tissues. Biochem J 153:469–478

    CAS  PubMed  Google Scholar 

  17. Itoh K, Watanabe M (2009) paradoxical facilitation of pentylenetetrazole-induced convulsion susceptibility in mice lacking neuronal nitric oxide synthase. Neuroscience 159:735–743

    Article  CAS  PubMed  Google Scholar 

  18. Kato K, Katoh-Semba R, Takeuchi IK, Ito H, Kamei K (1999) Responses of heat shock proteins hsp27, alphaB-crystalline, and hsp70 in rat brain after kainic acid-induced seizure activity. J Neurochem 73:229–236

    Article  CAS  PubMed  Google Scholar 

  19. Kawahara K, Gotoh T, Oyadomari S, Kajizono M, Kuniyasu A, Ohsawa K, Imai Y, Kohsaka S, Nakayama H, Mori M (2001) Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. Mol Brain Res 90:165–173

    Article  CAS  PubMed  Google Scholar 

  20. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2000) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361

    Article  Google Scholar 

  21. Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    Article  CAS  PubMed  Google Scholar 

  22. Lapouble E, Montecot C, Sevestre A, Pichon J (2002) Phosphinothricin induces epileptic activity via nitric oxide production through NMDA receptor activation in adult mice. Brain Res 957:46–52

    Article  CAS  PubMed  Google Scholar 

  23. Levin B (1971) Hereditary metabolic disorders of urea cycle. In: Bodensky O, Latner AL (eds) Advances in clinical chemistry, vol 14. Academic, New York, p 66

    Google Scholar 

  24. Luo Y, Hattori A, Munoz J, Qin ZH, Roth GS (1999) Intrastriatal dopamine injection induces apoptosis through oxidation-involved activation of transcription factors AP-1 and NK-kappaB in rats. Mol Pharmacol 56:254–264

    CAS  PubMed  Google Scholar 

  25. Maalouf M, Sullivan PG, Davis L, Kim DY, Rho JM (2007) Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by ncreasing NADH oxidation. Neuroscience 145:256–264

    Article  CAS  PubMed  Google Scholar 

  26. Milatovic D, Gupta RC, Dettbarn WD (2002) Involvement of nitric oxide in Kainic acid-induced excitotoxicity in rat brain. Brain Res 957:330–337

    Article  CAS  PubMed  Google Scholar 

  27. Mori M (2007) Regulation of Nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr 137:1616S–1620S

    CAS  PubMed  Google Scholar 

  28. Nakaki T, Mishima A, Suzuki E, Shintani F, Fujii T (2000) Glufosinate ammonium stimulates nitric oxide production through N-methyl-D-aspartate receptors in rat cerebellum. Neurosci Lett 290:209–212

    Article  CAS  PubMed  Google Scholar 

  29. Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  30. Radenovic L, Selakovic V (2005) Differential effects of NMDA and AMPA/Kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection. Brain Res Bull 67:133–141

    Article  CAS  PubMed  Google Scholar 

  31. Rodrigo R, Felipo V (2007) Control of brain glutamine synthesis by NMDA receptors. Front Biosci 12:883–890

    Article  CAS  PubMed  Google Scholar 

  32. Rose C, Felipo V (2005) Limited capacity for ammonia removal by brain in chronic liver failure: potential role of nitric oxide. Metab Brain Dis 20:275–283

    Article  CAS  PubMed  Google Scholar 

  33. Rowe WB, Ronzio RA, Wellner VP, Meister A (1970) Glutamine synthetase (Sheep brain). In: Tabor H, Tabor CW (eds) Methods in Enzymol, vol XVII Part A. Academic, New York, pp 900–910

    Google Scholar 

  34. Rundfeldt C, Koch R, Richter A, Mevissen M, Gerecke U, Loscher W (1995) Dose-dependent anticonvulsant and proconvulsant effects of nitric oxide synthase inhibitors on seizure threshold in a cortical stimulation model in rats. Eur J Pharmacol 274:73–81

    Article  CAS  PubMed  Google Scholar 

  35. Sadasivudu B, Lajtha A (1970) Metabolism of amino acids in incubated slices of mouse brain. J Neurochem 17:1299–1311

    Article  CAS  PubMed  Google Scholar 

  36. Sadasivudu B, Nasreen Z, Swamy M (1985) Functional significance of the activities of gutaminase and ornithine-ω- aminotransferase in rat brain. Neurochem Int 7:449–454

    Article  CAS  PubMed  Google Scholar 

  37. Silva-Adaya D, Perez-De La Cruz V, Herrera-Mundo MN, Mendoza-Maccedo K, Villeda-Hernandez J, Bininda Z, Ali SF, Santamria A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. J Neurochem 105:677–689

    Article  CAS  PubMed  Google Scholar 

  38. Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42:1–32

    Article  CAS  PubMed  Google Scholar 

  39. Swamy M, Adlin ZZ, Chandran G, Sirajudeen KNS, Nadiger HA (2005) Effect of acute ammonia toxicity on nitric oxide (NO), citrulline-NO cycle enzymes, arginase and related metabolites in different regions of rat brain. Neurosci Res 53:116–122

    Article  CAS  PubMed  Google Scholar 

  40. Swamy M, Sirajudeen KNS, Chandran G (2009) Nitric oxide [NO] citrulline-NO cycle enzymes, glutamins synthetase and oxidative status in kainic acid-mediated excitotoxicity in rat brain. Drug Chem Toxicol 32:326–331

    Article  CAS  PubMed  Google Scholar 

  41. Szatkowski M, Attwell D (1994) Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci 17:359–365

    Article  CAS  PubMed  Google Scholar 

  42. Tournier C, Hes P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavella RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    Article  CAS  PubMed  Google Scholar 

  43. White HS (2002) Animal models of epileptogenesis. Neurology 59:S7–S12

    PubMed  Google Scholar 

  44. Wiesinger H (2001) Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64:365–391

    Article  CAS  PubMed  Google Scholar 

  45. Yui Y, Hattori R, Kosuga K, Eizawa H, Hiki K, Ohkawa S, Ohnishi K, Terao S, Kawai C (1991) Calmodulin-independent nitric oxide synthase from rat polymorphonuclear neutrophils. J Biol Chem 266:3369–3371

    CAS  PubMed  Google Scholar 

  46. Zhang WY, Gotoh T, Oyadomari S, Mori M (2000) Coinduction of inducible nitric oxide synthase and arginine recycling enzymes in cytokine-stimulated PC 12 cells and high output production of nitric oxide. Mol Brain Res 83:1–8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study project received financial support from Universiti Sains Malaysia–Research University grant (A/C No: 1001/PSKBP/8120196). WRWY received NSF from MOSTI. The programme leader of the research cluster, Prof. Jafri Malin Abdullah is duly acknowledged. The findings of the study were presented in seventh COSTAM/SFRR (Asia/Malaysia) International Workshop 2009, 9th–12th July 2009, Meritus Pelangi Beach Resort, Langkawi, Malaysia and 14th National Conference on Medical and Health Sciences, 21–22 May 2009, Health Campus, Kubang Kerian, Kota Bharu, Kelantan, Malaysia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mummedy Swamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, M., Yusof, W.R.W., Sirajudeen, K.N.S. et al. Decreased glutamine synthetase, increased citrulline–nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model. J Physiol Biochem 67, 105–113 (2011). https://doi.org/10.1007/s13105-010-0054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-010-0054-2

Keywords

Navigation