Journal of Physiology and Biochemistry

, Volume 67, Issue 1, pp 129–139 | Cite as

Biological functions of microRNAs: a review

  • Yong Huang
  • Xing Jia Shen
  • Quan Zou
  • Sheng Peng Wang
  • Shun Ming Tang
  • Guo Zheng Zhang
Mini Review

Abstract

MicroRNAs (miRNAs) are a recently discovered family of endogenous, noncoding RNA molecules approximately 22 nt in length. miRNAs modulate gene expression post-transcriptionally by binding to complementary sequences in the coding or 3′ untranslated region of target messenger RNAs (mRNAs). It is now clear that the biogenesis and function of miRNAs are related to the molecular mechanisms of various clinical diseases, and that they can potentially regulate every aspect of cellular activity, including differentiation and development, metabolism, proliferation, apoptotic cell death, viral infection and tumorgenesis. Here, we review recent advances in miRNA research, and discuss the diverse roles of miRNAs in disease.

Keywords MicroRNA Biogenesis Function Expression Disease 

References

  1. 1.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedGoogle Scholar
  2. 2.
    Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, Liu CG, Reinhold W, Lorenzi PL, Kaldjian EP, Croce CM, Weinstein JN, Sadee W (2007) MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 6:1483–1491CrossRefPubMedGoogle Scholar
  3. 3.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529CrossRefPubMedGoogle Scholar
  4. 4.
    Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618CrossRefPubMedGoogle Scholar
  5. 5.
    Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321CrossRefPubMedGoogle Scholar
  6. 6.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752CrossRefPubMedGoogle Scholar
  7. 7.
    Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C (2009) MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 83:131–139CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47:5–14CrossRefPubMedGoogle Scholar
  9. 9.
    Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710PubMedGoogle Scholar
  10. 10.
    Coulson JM (2005) Transcriptional regulation: cancer, neurons and the REST. Curr Biol 15:R665–R668CrossRefPubMedGoogle Scholar
  11. 11.
    Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132:4645–4652CrossRefPubMedGoogle Scholar
  12. 12.
    El Ouaamari A, Baroukh N, Martens GA, Lebrun P, Pipeleers D, van Obberghen E (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57:2708–2717CrossRefPubMedGoogle Scholar
  13. 13.
    Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792:497–505PubMedGoogle Scholar
  14. 14.
    Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284CrossRefPubMedGoogle Scholar
  15. 15.
    Guarnieri DJ, DiLeone RJ (2008) MicroRNAs: a new class of gene regulators. Ann Med 40:197–208CrossRefPubMedGoogle Scholar
  16. 16.
    Isken F, Steffen B, Merk S, Dugas M, Markus B, Tidow N, Zuhlsdorf M, Illmer T, Thiede C, Berdel WE, Serve H, Muller-Tidow C (2008) Identification of acute myeloid leukaemia associated microRNA expression patterns. Br J Haematol 140:153–161CrossRefPubMedGoogle Scholar
  17. 17.
    Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, Qin LX, Man K, Lo CM, Lee J, Ng IO, Fan J, Tang ZY, Sun HC, Wang XW (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361:1437–1447CrossRefPubMedGoogle Scholar
  18. 18.
    Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9:109–113CrossRefPubMedGoogle Scholar
  19. 19.
    Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647CrossRefPubMedGoogle Scholar
  21. 21.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500CrossRefPubMedGoogle Scholar
  22. 22.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739CrossRefPubMedGoogle Scholar
  23. 23.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Orum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201CrossRefPubMedGoogle Scholar
  24. 24.
    Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560CrossRefPubMedGoogle Scholar
  25. 25.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854CrossRefPubMedGoogle Scholar
  26. 26.
    Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101:9740–9744CrossRefPubMedGoogle Scholar
  27. 27.
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254CrossRefPubMedGoogle Scholar
  28. 28.
    Liu X, Luo G, Bai X, Wang XJ (2009) Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes. J Genet Genomics 36:591–601CrossRefPubMedGoogle Scholar
  29. 29.
    Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600CrossRefPubMedGoogle Scholar
  30. 30.
    Lv K, Guo Y, Zhang Y, Wang K, Jia Y, Sun S (2008) Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes. Biochem Biophys Res Commun 374:101–105CrossRefPubMedGoogle Scholar
  31. 31.
    Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256PubMedGoogle Scholar
  32. 32.
    Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448CrossRefPubMedGoogle Scholar
  33. 33.
    Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–626CrossRefPubMedGoogle Scholar
  34. 34.
    Mishima Y, Giraldez AJ, Takeda Y, Fujiwara T, Sakamoto H, Schier AF, Inoue K (2006) Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol 16:2135–2142CrossRefPubMedGoogle Scholar
  35. 35.
    Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802CrossRefPubMedGoogle Scholar
  36. 36.
    O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609CrossRefPubMedGoogle Scholar
  37. 37.
    O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL, Baltimore D (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205:585–594CrossRefPubMedGoogle Scholar
  38. 38.
    O'Hara SP, Mott JL, Splinter PL, Gores GJ, LaRusso NF (2009) MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology 136:17–25CrossRefPubMedGoogle Scholar
  39. 39.
    Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680CrossRefPubMedGoogle Scholar
  40. 40.
    Ovcharenko D, Kelnar K, Johnson C, Leng N, Brown D (2007) Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 67:10782–10788CrossRefPubMedGoogle Scholar
  41. 41.
    Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922CrossRefPubMedGoogle Scholar
  42. 42.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906CrossRefPubMedGoogle Scholar
  43. 43.
    Rossi L, Bonmassar E, Faraoni I (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 56:248–253CrossRefPubMedGoogle Scholar
  44. 44.
    Saito Y, Suzuki H, Hibi T (2009) The role of microRNAs in gastrointestinal cancers. J Gastroenterol 44(Suppl 19):18–22CrossRefPubMedGoogle Scholar
  45. 45.
    Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Arch 452:1–10CrossRefPubMedGoogle Scholar
  46. 46.
    Seitz H, Zamore PD (2006) Rethinking the microprocessor. Cell 125:827–829CrossRefPubMedGoogle Scholar
  47. 47.
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian miRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13CrossRefPubMedGoogle Scholar
  48. 48.
    Shenouda SK, Alahari SK (2009) MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 28:369–378CrossRefPubMedGoogle Scholar
  49. 49.
    Shi Y, Jin Y (2009) MicroRNA in cell differentiation and development. Sci China C Life Sci 52:205–211CrossRefPubMedGoogle Scholar
  50. 50.
    Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477CrossRefPubMedGoogle Scholar
  51. 51.
    Song L, Tuan RS (2006) MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today 78:140–149CrossRefPubMedGoogle Scholar
  52. 52.
    Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Stahle M, Pivarcsi A (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE 2:e610CrossRefPubMedGoogle Scholar
  53. 53.
    Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678CrossRefPubMedGoogle Scholar
  54. 54.
    Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–686CrossRefPubMedGoogle Scholar
  55. 55.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756CrossRefPubMedGoogle Scholar
  56. 56.
    Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21:644–648CrossRefPubMedGoogle Scholar
  57. 57.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075CrossRefPubMedGoogle Scholar
  58. 58.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128CrossRefPubMedGoogle Scholar
  59. 59.
    Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, Hoelker M (2009) Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 76:665–677CrossRefPubMedGoogle Scholar
  60. 60.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984CrossRefPubMedGoogle Scholar
  61. 61.
    Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, Reynes J, Corbeau P, Jeang KT, Benkirane M (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582CrossRefPubMedGoogle Scholar
  62. 62.
    Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, Yoshida K, Sasaki H, Nomura S, Seto Y, Kaminishi M, Calin GA, Croce CM (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11:136–146CrossRefPubMedGoogle Scholar
  63. 63.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMedGoogle Scholar
  64. 64.
    Van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21CrossRefPubMedGoogle Scholar
  65. 65.
    Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749CrossRefPubMedGoogle Scholar
  66. 66.
    Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271CrossRefPubMedGoogle Scholar
  67. 67.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862CrossRefPubMedGoogle Scholar
  68. 68.
    Williams AE (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci 65:545–562CrossRefPubMedGoogle Scholar
  69. 69.
    Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, Manjunath N (2007) miRNA profiling of naive, effector and memory CD8 T cells. PLoS ONE 2:e1020CrossRefPubMedGoogle Scholar
  70. 70.
    Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123:372–379CrossRefPubMedGoogle Scholar
  71. 71.
    Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36CrossRefPubMedGoogle Scholar
  72. 72.
    Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5:e1000444CrossRefPubMedGoogle Scholar
  73. 73.
    Yu Z, Raabe T, Hecht NB (2005) MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod 73:427–433CrossRefPubMedGoogle Scholar
  74. 74.
    Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Qiang B, Zhao J, Yuan J, Peng X (2009) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87:43–51CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2010

Authors and Affiliations

  • Yong Huang
    • 1
    • 3
  • Xing Jia Shen
    • 1
    • 3
  • Quan Zou
    • 2
  • Sheng Peng Wang
    • 1
    • 3
  • Shun Ming Tang
    • 1
    • 3
  • Guo Zheng Zhang
    • 1
    • 3
  1. 1.Jiang Su University of Science and TechnologyZhenjiang CityPeople’s Republic of China
  2. 2.School of Information Science and Technology of Xiamen UniversityXiamen CityPeople’s Republic of China
  3. 3.The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiang CityPeople’s Republic of China

Personalised recommendations