Journal of Physiology and Biochemistry

, Volume 66, Issue 2, pp 105–115 | Cite as

Calcitriol mediates the activity of SGLT1 through an extranuclear initiated mechanism that involves intracellular signaling pathways

  • Carmen Castaneda-Sceppa
  • Francisco CastanedaEmail author
Original Paper


The present study explored whether calcitriol plays a role in the regulation of sodium-dependent glucose transporter protein 1 (SGLT1) activity. For this purpose, alpha-methyl glucoside (AMG) uptake in stable transfected Chinese hamster ovary (CHO-G6D3) cells expressing rabbit SGLT1 (rbSGLT1) was used. The involvement of second messengers, intracellular signaling pathways, and pro-inflammatory cytokines were examined using specific inhibitors before incubation with calcitriol for 15 min. The present study demonstrated the involvement of second messengers produced by phospholipase A2, phospholipase C, calmodulin, diacylglycerol kinase, and phosphoinositide 3 kinase on calcitriol-regulated AMG uptake. Pretreatment with inhibitors of the mitogen-activated protein kinase (MAPK) signaling pathway increased calcitriol-induced AMG uptake. In contrast, inhibition of the phosphoinositide 3-kinase PI3K/Akt/mTOR signaling pathway decreased the effect of calcitriol on AMG uptake. These findings suggest that calcitriol regulates rbSGLT1 activity through a rapid, extranuclear initiated mechanism of action stimulated by MAPK and inhibited by PI3K/Akt/mTOR. Another important finding was the effect of pro-inflammatory cytokines on calcitriol-induced AMG uptake. Interleukin-6 increased while tumor necrosis factor-α decreased calcitriol-induced AMG uptake. In conclusion, the present study demonstrates the involvement of calcitriol in the regulation of rbSGLT1 activity. This is due to the activation of intracellular signaling pathways triggered by second messenger molecules and cytokines after a short time (15 min) exposure to calcitriol.


AMG uptake Calcitriol SGLT Non-genomic effect Second messengers Intracellular signaling 



1α,25-Dihydroxyvitamin D3


Arachidonyl trifluoromethyl ketone


Protein kinase B


Diacylglycerol kinase


Mitogen-activated protein kinase


Mammalian target of rapamycin


Phosphoinositide 3-kinase


Phospholipase A2


Phospholipase C



We acknowledge the financial support of the International Max Planck Research School in Chemical Biology, Dortmund, Germany.


  1. 1.
    Amador P, Garcia-Herrera J, Marca MC, De La Osada J, Acin S, Navarro MA, Salvador MT, Lostao MP, Rodriguez-Yoldi MJ (2007) Inhibitory effect of TNF-alpha on the intestinal absorption of galactose. J Cell Biochem 101:99–111CrossRefPubMedGoogle Scholar
  2. 2.
    Atley LM, Lefroy N, Wark JD (1995) 1,25-Dihydroxyvitamin D3-induced upregulation of the thyrotropin-releasing hormone receptor in clonal rat pituitary GH3 cells. J Endocrinol 147:397–404CrossRefPubMedGoogle Scholar
  3. 3.
    Banerjee P, Chatterjee M (2003) Antiproliferative role of vitamin D and its analogs—a brief overview. Mol Cell Biochem 253:247–254CrossRefPubMedGoogle Scholar
  4. 4.
    Bosch M, Gil J, Bachs O, Agell N (1998) Calmodulin inhibitor W13 induces sustained activation of ERK2 and expression of p21(cip1). J Biol Chem 273:22145–22150CrossRefPubMedGoogle Scholar
  5. 5.
    Boyan BD, Schwartz Z (2004) Rapid vitamin D-dependent PKC signaling shares features with estrogen-dependent PKC signaling in cartilage and bone. Steroids 69:591–597CrossRefPubMedGoogle Scholar
  6. 6.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. 7.
    Calle C, Maestro B, Garcia-Arencibia M (2008) Genomic actions of 1,25-dihydroxyvitamin D3 on insulin receptor gene expression, insulin receptor number and insulin activity in the kidney, liver and adipose tissue of streptozotocin-induced diabetic rats. BMC Mol Biol 9:65CrossRefPubMedGoogle Scholar
  8. 8.
    Castaneda-Sceppa C, Subramanian S, Castaneda F (2010) Protein kinase C mediated intracellular signaling pathways are involved in the regulation of sodium-dependent glucose co-transporter SGLT1 activity. J Cell Biochem 109:1109–1117PubMedGoogle Scholar
  9. 9.
    Castaneda F (2009) Protein biosynthesis: a new method for functional expression of sodium-dependent glucose transporter (SGLT) to study inhibition of transport activity and drug discovery. In: Esterhouse TE, Petrinos LB (eds) Protein biosynthesis. Nova Science Publishers, New York, pp 267–284Google Scholar
  10. 10.
    Castaneda F, Kinne RKH (2005) A 96-well automated method to study inhibitors of human sodium-dependent d-glucose transport. Mol Cell Biochem 280:91–98CrossRefPubMedGoogle Scholar
  11. 11.
    Committee NRN (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163CrossRefGoogle Scholar
  12. 12.
    D'emden MC, Wark JD (1991) Culture requirements for optimal expression of 1 alpha, 25-dihydroxyvitamin D3-enhanced thyrotropin secretion. In Vitro Cell Dev Biol 27A:197–204CrossRefPubMedGoogle Scholar
  13. 13.
    De Boland AR, Boland RL (1994) Non-genomic signal transduction pathway of vitamin D in muscle. Cell Signal 6:717–24CrossRefPubMedGoogle Scholar
  14. 14.
    Debiec H, Cross HS, Peterlik M (1991) 1,25-Dihydroxycholecalciferol-related Na+/d-glucose transport in brush-border membrane vesicles from embryonic chick jejunum. Modulation by triiodothyronine. Eur J Biochem 201:709–13CrossRefPubMedGoogle Scholar
  15. 15.
    Diez-Sampedro A, Wright EM, Hirayama BA (2001) Residue 457 controls sugar binding and transport in the Na(+)/glucose cotransporter. J Biol Chem 276:49188–49194CrossRefPubMedGoogle Scholar
  16. 16.
    Falkenstein E, Norman AW, Wehling M (2000) Mannheim classification of nongenomically initiated (rapid) steroid action(s). J Clin Endocrinol Metab 85:2072–5CrossRefPubMedGoogle Scholar
  17. 17.
    Fernandez-Real JM, Vendrell J, Ricart W, Broch M, Gutierrez C, Casamitjana R, Oriola J, Richart C (2000) Polymorphism of the tumor necrosis factor-alpha receptor 2 gene is associated with obesity, leptin levels, and insulin resistance in young subjects and diet-treated type 2 diabetic patients. Diabetes Care 23:831–7CrossRefPubMedGoogle Scholar
  18. 18.
    Fuchs R, Graf J, Peterlik M (1985) Effects of 1 alpha, 25-dihydroxycholecalciferol on sodium-ion translocation across chick intestinal brush-border membrane. Biochem J 230:441–9PubMedGoogle Scholar
  19. 19.
    Han HJ, Park SH, Lee YJ (2004) Signaling cascade of ANG II-induced inhibition of alpha-MG uptake in renal proximal tubule cells. Am J Physiol Renal Physiol 286:F634–642CrossRefPubMedGoogle Scholar
  20. 20.
    Hardin J, Kroeker K, Chung B, Gall DG (2000) Effect of proinflammatory interleukins on jejunal nutrient transport. Gut 47:184–91CrossRefPubMedGoogle Scholar
  21. 21.
    Hediger MA, Rhoads DB (1994) Molecular physiology of sodium–glucose cotransporters. Physiol Rev 74:993–1026PubMedGoogle Scholar
  22. 22.
    Helming L, Bose J, Ehrchen J, Schiebe S, Frahm T, Geffers R, Probst-Kepper M, Balling R, Lengeling A (2005) 1alpha, 25-dihydroxyvitamin D3 is a potent suppressor of interferon gamma-mediated macrophage activation. Blood 106:4351–4358CrossRefPubMedGoogle Scholar
  23. 23.
    Hopfer U (1981) Kinetic criteria for carrier-mediated transport mechanisms in membrane vesicles. Fed Proc 40:2480–2485PubMedGoogle Scholar
  24. 24.
    Illig T, Bongardt F, Schopfer A, Muller-Scholze S, Rathmann W, Koenig W, Thorand B, Vollmert C, Holle R, Kolb H, Herder C (2004) Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. J Clin Endocrinol Metab 89:5053–5058CrossRefPubMedGoogle Scholar
  25. 25.
    Inoue E, Ishimi Y, Yamauchi J (2008) Differential regulation of extracellular signal-related kinase phosphorylation by vitamin D3 analogs. Biosci Biotechnol Biochem 72:246–269CrossRefPubMedGoogle Scholar
  26. 26.
    Kadowaki S, Norman AW (1984) Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest 73:759–766CrossRefPubMedGoogle Scholar
  27. 27.
    Kim EJ, Lee YJ, Lee JH, Han HJ (2004) Effect of epinephrine on alpha-methyl-d-glucopyranoside uptake in renal proximal tubule cells. Cell Physiol Biochem 14:395–406CrossRefPubMedGoogle Scholar
  28. 28.
    Kimmich GA, Randles J (1981) alpha-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium. Am J Physiol Cellular Physiol 241:C227–232Google Scholar
  29. 29.
    Kong CT, Yet SF, Lever JE (1993) Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. J Biol Chem 268:1509–1512PubMedGoogle Scholar
  30. 30.
    Lee SA, Park JK, Kang EK, Bae HR, Bae KW, Park HT (2000) Calmodulin-dependent activation of p38 and p42/44 mitogen-activated protein kinases contributes to c-fos expression by calcium in PC12 cells: modulation by nitric oxide. Brain Res Mol Brain Res 75:16–24CrossRefPubMedGoogle Scholar
  31. 31.
    Lin JT, Kormanec J, Wehner F, Wielert-Badt S, Kinne RK (1998) High-level expression of Na+/d-glucose cotransporter (SGLT1) in a stably transfected Chinese hamster ovary cell line. Biochim Biophys Acta 1373:309–320CrossRefPubMedGoogle Scholar
  32. 32.
    Lips P (2006) Vitamin D physiology. Prog Biophys Mol Biol 92:4–8CrossRefPubMedGoogle Scholar
  33. 33.
    Loo DDF, Hirayama BA, Gallardo EM, Lam JT, Turk E, Wright EM (1998) Conformational changes couple Na+ and glucose transport. Proc Natl Acad Sci USA 95:7789–7794CrossRefPubMedGoogle Scholar
  34. 34.
    Morelli S, Buitrago C, Boland R, De Boland AR (2001) The stimulation of MAP kinase by 1,25(OH)(2)-vitamin D(3) in skeletal muscle cells is mediated by protein kinase C and calcium. Mol Cell Endocrinol 173:41–52CrossRefPubMedGoogle Scholar
  35. 35.
    Norman AW (2006) Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinol 147:5542–5548CrossRefGoogle Scholar
  36. 36.
    Norman AW, Bishop JE, Bula CM, Olivera CJ, Mizwicki MT, Zanello LP, Ishida H, Okamura WH (2002) Molecular tools for study of genomic and rapid signal transduction responses initiated by 1 alpha, 25(OH)(2)-vitamin D(3). Steroids 67:457–466CrossRefPubMedGoogle Scholar
  37. 37.
    Norman AW, Mizwicki MT, Norman DP (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Disc 3:27–41CrossRefGoogle Scholar
  38. 38.
    Pardo VG, Boland R, De Boland AR (2006) 1alpha, 25(OH)(2)-Vitamin D(3) stimulates intestinal cell p38 MAPK activity and increases c-Fos expression. Int J Biochem Cell Biol 38:1181–1190CrossRefPubMedGoogle Scholar
  39. 39.
    Peterlik M, Fuchs R, Cross HS (1981) Stimulation of d-glucose transport. A novel effect of vitamin D on intestinal membrane transport. Biochim Biophys Acta 649:138–142CrossRefPubMedGoogle Scholar
  40. 40.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedGoogle Scholar
  41. 41.
    Puntheeranurak T, Wimmer B, Castaneda F, Gruber HJ, Hinterdorfer P, Kinne RK (2007) Substrate specificity of sugar transport by rabbit SGLT1: single-molecule atomic force microscopy versus transport studies. Biochemistry 46:2797–2804CrossRefPubMedGoogle Scholar
  42. 42.
    Raja MM, Kipp H, Kinne RK (2004) C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Biochemistry 43:10944–10951CrossRefPubMedGoogle Scholar
  43. 43.
    Samuel S, Sitrin MD (2008) Vitamin D’s role in cell proliferation and differentiation. Nutr Rev 66:S116–24CrossRefPubMedGoogle Scholar
  44. 44.
    Santillan GE, Boland RL (1998) Studies suggesting the participation of protein kinase A in 1,25(OH)2-vitamin D3-dependent protein phosphorylation in cardiac muscle. J Mol Cell Cardiol 30:225–233CrossRefPubMedGoogle Scholar
  45. 45.
    Schwartz Z, Ehland H, Sylvia VL, Larsson D, Hardin RR, Bingham V, Lopez D, Dean DD, Boyan BD (2002) 1alpha, 25-dihydroxyvitamin D(3) and 24R, 25-dihydroxyvitamin D(3) modulate growth plate chondrocyte physiology via protein kinase C-dependent phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. Endocrinol 143:2775–2786CrossRefGoogle Scholar
  46. 46.
    Schwartz Z, Shaked D, Hardin RR, Gruwell S, Dean DD, Sylvia VL, Boyan BD (2003) 1alpha, 25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-beta activity via phospholipase A2-dependent production of lysophospholipid. Steroids 68:423–437CrossRefPubMedGoogle Scholar
  47. 47.
    Schwartz Z, Sylvia VL, Luna MH, Deveau P, Whetstone R, Dean DD, Boyan BD (2001) The effect of 24R, 25-(OH)(2)D(3) on protein kinase C activity in chondrocytes is mediated by phospholipase D whereas the effect of 1alpha, 25-(OH)(2)D(3) is mediated by phospholipase C. Steroids 66:683–694CrossRefPubMedGoogle Scholar
  48. 48.
    Selles J, Boland R (1991) Evidence on the participation of the 3′,5′-cyclic AMP pathway in the non-genomic action of 1,25-dihydroxy-vitamin D3 in cardiac muscle. Mol Cell Endocrinol 82:229–235CrossRefPubMedGoogle Scholar
  49. 49.
    Sitrin MD, Bissonnette M, Bolt MJ, Wali R, Khare S, Scaglione-Sewell B, Skarosi S, Brasitus TA (1999) Rapid effects of 1,25(OH)2 vitamin D3 on signal transduction systems in colonic cells. Steroids 64:137–142CrossRefPubMedGoogle Scholar
  50. 50.
    Slater SJ, Kelly MB, Taddeo FJ, Larkin JD, Yeager MD, Mclane JA, Ho C, Stubbs CD (1995) Direct activation of protein kinase C by 1 alpha, 25-dihydroxyvitamin D3. J Biol Chem 270:6639–6643CrossRefPubMedGoogle Scholar
  51. 51.
    Subramanian S, Glitz P, Kipp H, Kinne RK, Castaneda F (2009) Protein kinase-A affects sorting and conformation of the sodium-dependent glucose co-transporter SGLT1. J Cell Biochem 106:444–452CrossRefPubMedGoogle Scholar
  52. 52.
    Sylvia VL, Schwartz Z, Curry DB, Chang Z, Dean DD, Boyan BD (1998) 1,25(OH)2D3 regulates protein kinase C activity through two phospholipid-dependent pathways involving phospholipase A2 and phospholipase C in growth zone chondrocytes. J Bone Miner Res 13:559–569CrossRefPubMedGoogle Scholar
  53. 53.
    Sylvia VL, Schwartz Z, Ellis EB, Helm SH, Gomez R, Dean DD, Boyan BD (1996) Nongenomic regulation of protein kinase C isoforms by the vitamin D metabolites 1 alpha, 25-(OH)2D3 and 24R, 25-(OH)2D3. J Cell Physiol 167:380–393CrossRefPubMedGoogle Scholar
  54. 54.
    Tudpor K, Teerapornpuntakit J, Jantarajit W, Krishnamra N, Charoenphandhu N (2008) 1,25-dihydroxyvitamin D(3) rapidly stimulates the solvent drug-induced paracellular calcium transport in the duodenum of female rats. J Physiol Sci 58:297–307CrossRefPubMedGoogle Scholar
  55. 55.
    Turner RJ (1983) Quantitative studies of cotransport systems: models and vesicles. J Membr Biol 76:1–15CrossRefPubMedGoogle Scholar
  56. 56.
    Vendrell J, Gutierrez C, Pastor R, Richart C (1995) A tumor necrosis factor-beta polymorphism associated with hypertriglyceridemia in non-insulin-dependent diabetes mellitus. Metabolism 44:691–694CrossRefPubMedGoogle Scholar
  57. 57.
    Vozarova B, Fernandez-Real JM, Knowler WC, Gallart L, Hanson RL, Gruber JD, Ricart W, Vendrell J, Richart C, Tataranni PA, Wolford JK (2003) The interleukin-6 (-174) G/C promoter polymorphism is associated with type-2 diabetes mellitus in Native Americans and Caucasians. Hum Genet 112:409–413PubMedGoogle Scholar
  58. 58.
    Weishaar RE, Kim SN, Saunders DE, Simpson RU (1990) Involvement of vitamin D3 with cardiovascular function. III. Effects on physical and morphological properties. Am J Physiol 258:E134–42PubMedGoogle Scholar
  59. 59.
    Wimmer B, Raja M, Hinterdorfer P, Gruber H, Kinne R (2009) C-terminal loop 13 of Na+/glucose cotransporter 1 contains both stereospecific and non-stereospecific sugar interaction sites. J Biol Chem 284:983–991CrossRefPubMedGoogle Scholar
  60. 60.
    Zanello LP, Norman A (2006) 1alpha, 25(OH)2 Vitamin D3 actions on ion channels in osteoblasts. Steroids 71:291–297CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2010

Authors and Affiliations

  1. 1.Bouve College of Health SciencesNortheastern University BostonBostonUSA
  2. 2.Laboratory for Molecular Pathobiochemistry and Clinical ResearchMax Planck Institute of Molecular PhysiologyDortmundGermany

Personalised recommendations