Journal of Physiology and Biochemistry

, Volume 66, Issue 2, pp 181–187

Differentiation of mesenchymal stem cells to insulin-producing cells and their impact on type 1 diabetic rats

  • Zeinab Neshati
  • Maryam M. Matin
  • Ahmad Reza Bahrami
  • Ali Moghimi
Original Paper

Abstract

Cell therapy is thought to be a possible approach for treatment of diabetes. Cells with the ability to differentiate into insulin-producing cells (IPCs) would provide an unlimited source of islet cells for transplantation. In this study, the differentiation capacity of rat bone-marrow-derived mesenchymal stem cells (MSCs) to IPCs and the feasibility of using them for reversal of hyperglycemia were investigated. In vitro studies indicated that treatment of cells with high glucose concentration, nicotinamide and β-mercaptoethanol resulted to differentiated cells, which had characteristics of IPCs including spherical, grape-like morphology, secretion of insulin, and being positive for dithizone. To test the in vivo function of differentiated MSCs, they were injected into the spleen of diabetic rats. It was shown that diabetic rats who received IPCs, significantly reduced the glucose level, in response to intraperitoneal glucose tolerance (IPGT) test. These results indicate that MSCs are capable of in vitro differentiation into functional IPCs, which can reverse hyperglycemia in rat model of diabetes.

Keywords

Diabetes Mesenchymal stem cells Differentiation Insulin-producing cells 

References

  1. 1.
    Atkinson MA, Eisenbarth GS (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358:221–229CrossRefPubMedGoogle Scholar
  2. 2.
    Roche E, Jones J, Arribas MI, Leon-Quinto T, Soria B (2006) Role of small bioorganic molecules in stem cell differentiation to insulin-producing cells. Bioorg Med Chem 14:6466–6474CrossRefPubMedGoogle Scholar
  3. 3.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238CrossRefPubMedGoogle Scholar
  4. 4.
    Mishra PK, Singh SR, Joshua IG, Tyagi SC (2010) Stem cells as a therapeutic target for diabetes. Front Biosci 15:461–477CrossRefPubMedGoogle Scholar
  5. 5.
    Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F (2000) Insulin secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–162CrossRefPubMedGoogle Scholar
  6. 6.
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394CrossRefPubMedGoogle Scholar
  7. 7.
    Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697CrossRefPubMedGoogle Scholar
  8. 8.
    Naujok O, Francini F, Jorns A, Lenzen S (2008) An efficient experimental strategy for mouse embryonic stem cell differentiation and separation of a cytokeratin-19-positive population of insulin-producing cells. Cell Prolif 41:607–624CrossRefPubMedGoogle Scholar
  9. 9.
    Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, O’Neill JJ (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 97:7999–8004CrossRefPubMedGoogle Scholar
  10. 10.
    Ramiya VK, Maraist M, Arfors KE, Schatz DA, Peck AB, Cornelius JG (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6:278–282CrossRefPubMedGoogle Scholar
  11. 11.
    Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE, Peck AB (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormon producing cells. Proc Natl Acad Sci USA 99:8078–8083CrossRefPubMedGoogle Scholar
  12. 12.
    Suzuki A, Nakauchi H, Taniguchi H (2003) Glucagon-like peptide 1 (1-37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci USA 100:5034–5039CrossRefPubMedGoogle Scholar
  13. 13.
    Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW (2005) In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330:1299–1305CrossRefPubMedGoogle Scholar
  14. 14.
    Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625CrossRefPubMedGoogle Scholar
  15. 15.
    Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, Yang LJ (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721–1732CrossRefPubMedGoogle Scholar
  16. 16.
    Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255CrossRefPubMedGoogle Scholar
  17. 17.
    Nakajima-Nagata N, Sakurai T, Mitaka T, Katakai T, Yamato E, Miyazaki J, Tabata Y, Sugai M, Shimizu A (2004) In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem Biophys Res Commun 318:625–630CrossRefPubMedGoogle Scholar
  18. 18.
    Matsumoto R, Omura T, Yoshiyama M, Hayashi T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, Kitaura Y, Takeuchi K, Yoshikawa J (2005) Vascular endothelial growth factor–expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 25:1168–1173CrossRefPubMedGoogle Scholar
  19. 19.
    Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92:4857–4861CrossRefPubMedGoogle Scholar
  20. 20.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  21. 21.
    Limbert C, Seufert J (2009) In vitro (re) programming of human bone marrow stromal cells toward insulin-producing phenotypes. Pediatr Diabetes 10:413–419CrossRefPubMedGoogle Scholar
  22. 22.
    Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850PubMedGoogle Scholar
  23. 23.
    Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE (2004) Adult bone marrow-derived cells transdifferentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest 84:607–617CrossRefPubMedGoogle Scholar
  24. 24.
    Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341:1135–1140CrossRefPubMedGoogle Scholar
  25. 25.
    Soria B (2001) In vitro differentiation of pancreatic beta-cells. Differentiation 68:205–219CrossRefPubMedGoogle Scholar
  26. 26.
    Zalzman M, Gupta S, Giri RK, Berkovich I, Sappal BS, Karnieli O, Zern MA, Fleischer N, Efrat S (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA 100:7253–7258CrossRefPubMedGoogle Scholar
  27. 27.
    Kojima H, Fujimiya M, Matsumura K, Nakahara T, Hara M, Chan L (2004) Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA 101:2458–2463CrossRefPubMedGoogle Scholar
  28. 28.
    Sun Y, Chen L, Hou XG, Hou WK, Dong JJ, Sun L, Tang KX, Wang B, Song J, Li H, Wang KX (2007) Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J 120:771–776PubMedGoogle Scholar
  29. 29.
    Otonkoski T, Beattie GM, Mally MI, Ricordi C, Hayek A (1993) Nicotinamide is a potent inducer of endocrine differentiation in cultured human fetal pancreatic cells. J Clin Invest 92:1459–1466CrossRefPubMedGoogle Scholar
  30. 30.
    Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50:521–533CrossRefPubMedGoogle Scholar
  31. 31.
    Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 10:3016–3020PubMedGoogle Scholar
  32. 32.
    Shiroi A, Yoshikawa M, Yokota H, Fukui H, Ishizaka S, Tatsumi K, Takahashi Y (2002) Identification of insulin-producing cells drived from embryonic stem cells by zinc-chelating dithizone. Stem Cells 20:284–292CrossRefPubMedGoogle Scholar
  33. 33.
    Latif ZA, Noel J, Alejandro R (1988) A simple method of staining fresh and cultured islets. Transplantation 45:827–830CrossRefPubMedGoogle Scholar
  34. 34.
    Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115PubMedGoogle Scholar
  35. 35.
    Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA (2003) Insulin staining of ES cells progeny from insulin uptake. Science 299:363PubMedGoogle Scholar
  36. 36.
    Vaca P, Martin F, Vegara-Meseguer JM, Rovira JM, Berna G, Soria B (2006) Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells 24:258–265CrossRefPubMedGoogle Scholar
  37. 37.
    Suys BE, Katier N, Rooman RP, Matthys D, Op De Beeck L, Du Caju MV, De Wolf D (2004) Female children and adolescents with type 1 diabetes have more pronounced early echocardiographic signs of diabetic cardiomyopathy. Diabetes Care 27:1947–1953CrossRefPubMedGoogle Scholar
  38. 38.
    Saravanan R, Pari L (2005) Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats. BMC Complement Altern Med 5:14CrossRefPubMedGoogle Scholar
  39. 39.
    Patel SP, Katyare SS (2006) Effect of alloxan-diabetes and subsequent treatment with insulin on lipid/phospholipid composition of rat brain microsomes and mitochondria. Neurosci Lett 399:129–134CrossRefPubMedGoogle Scholar
  40. 40.
    Macedo CS, Capelletti SM, Mercadante MCS, Padovan CR, Spadella CT (2002) Role of metabolic control on diabetic nephropathy. Acta Cir Bras 17:370–377CrossRefGoogle Scholar
  41. 41.
    Barreto EO, Riederer I, Arantes AC, Carvalho VF, Farias-Filho FA, Cordeiro RS, Martins MA, Savino W, e Silva PM (2005) Thymus involution in alloxan diabetes: analysis of mast cells. Mem Inst Oswaldo Cruz 100:127–130CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2010

Authors and Affiliations

  • Zeinab Neshati
    • 1
  • Maryam M. Matin
    • 1
    • 2
  • Ahmad Reza Bahrami
    • 1
    • 2
  • Ali Moghimi
    • 2
  1. 1.Cell and Molecular Research Group, Institute of BiotechnologyFerdowsi University of MashhadMashhadIran
  2. 2.Department of Biology, Faculty of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations