Advertisement

Bibliometric analysis of support vector machines research trend: a case study in China

  • Dejian Yu
  • Zeshui XuEmail author
  • Xizhao Wang
Original Article
  • 27 Downloads

Abstract

Support vector machine (SVM) is a widely used algorithm in the field of machine learning, and it is a research hotspot in the field of data mining. In order to fully understand the historical progress and current situation of SVM researches, as well as its future development trend in China, this paper conducts a comprehensive bibliometric study based on the publications from web of science database by Chinese scholars in this field. First, this paper focuses on some of the basic characteristics of the research publications of SVM in China, including important journals, research institutions and countries/regions, most cited publications, and so on. Then, based on the knowledge mapping software VOSviewer, the cooperation between other countries and China as well as the cooperation between research institutions in China are explored. Finally, VOSviewer based bibliometric visualization graphics are used to identify the changes of the research hotspots in the SVM field. This paper provides a relatively broad perspective for the evaluation of SVM scientific researches, and reveals the development trend in this field.

Keywords

Bibliometric analysis Support vector machines Co-citation Co-occurrence China 

Notes

Acknowledgements

This manuscript was supported by the Ministry of Education of Humanities and Social Science project (No. 19YJC630208), the Qinglan Project of Jiangsu Province (2019), the National Natural Science Foundation of China (Nos. 71771155, 71571123), and the Natural Science Research Project of Jiangsu Higher Education Institutions (19KJB120008).

References

  1. 1.
    Wu X et al (2013) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107Google Scholar
  2. 2.
    Lin MW et al (2018) Clustering algorithms based on correlation coefficients for probabilistic linguistic term sets. Int J Intell Syst 33(12):2402–2424CrossRefGoogle Scholar
  3. 3.
    Rygielski C, Wang JC, Yen DC (2002) Data mining techniques for customer relationship management. Technol Soc 24(4):483–502CrossRefGoogle Scholar
  4. 4.
    Wang XZ et al (2005) A genetic algorithm for solving the inverse problem of support vector machines. Neurocomputing 68:225–238CrossRefGoogle Scholar
  5. 5.
    Jun Lee S, Siau K (2001) A review of data mining techniques. Ind Manag Data Syst 101(1):41–46CrossRefGoogle Scholar
  6. 6.
    Lin MW et al (2019) ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing. Nonlinear Dyn 96(3):2125–2143CrossRefGoogle Scholar
  7. 7.
    Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRefGoogle Scholar
  8. 8.
    Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425CrossRefGoogle Scholar
  9. 9.
    Yang L, Xu Z (2019) Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning. Int J Mach Learn Cybern 10(3):591–601CrossRefGoogle Scholar
  10. 10.
    Zhang J et al (2018) Locality similarity and dissimilarity preserving support vector machine. Int J Mach Learn Cybern 9(10):1663–1674CrossRefGoogle Scholar
  11. 11.
    Chen SG, Wu XJ (2018) A new fuzzy twin support vector machine for pattern classification. Int J Mach Learn Cybern 9(9):1553–1564CrossRefGoogle Scholar
  12. 12.
    Wang XZ, Lu SX, Zhai JH (2008) Fast fuzzy multicategory SVM based on support vector domain description. Int J Pattern Recognit Artif Intell 22(01):109–120CrossRefGoogle Scholar
  13. 13.
    Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogram Remote Sens 66(3):247–259CrossRefGoogle Scholar
  14. 14.
    De Villiers J, Barnard E (1993) Backpropagation neural nets with one and two hidden layers. IEEE Trans Neural Netw 4(1):136–141CrossRefGoogle Scholar
  15. 15.
    Zendehboudi A, Baseer MA, Saidur R (2018) Application of support vector machine models for forecasting solar and wind energy resources: a review. J Clean Prod 199:272–285CrossRefGoogle Scholar
  16. 16.
    Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. Catena 165:520–529CrossRefGoogle Scholar
  17. 17.
    Guo H, Wang W (2019) Granular support vector machine: a review. Artif Intell Rev 51(1):19–32CrossRefGoogle Scholar
  18. 18.
    Ding S, Qi B (2012) Research of granular support vector machine. Artif Intell Rev 38(1):1–7CrossRefGoogle Scholar
  19. 19.
    He XR et al (2017) Exploring the ordered weighted averaging operator knowledge domain: a bibliometric analysis. Int J Intell Syst 32(11):1151–1166CrossRefGoogle Scholar
  20. 20.
    Merigó JM, Yang JB (2017) A bibliometric analysis of operations research and management science. Omega 73:37–48CrossRefGoogle Scholar
  21. 21.
    Zhu S, Jin W, He C (2019) On evolutionary economic geography: a literature review using bibliometric analysis. Eur Plan Stud 27(4):639–660CrossRefGoogle Scholar
  22. 22.
    Bornmann L, Mutz R (2015) Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. J Assoc Inform Sci Technol 66(11):2215–2222CrossRefGoogle Scholar
  23. 23.
    Xu ZS, Yu DJ, Wang XZ (2019) A bibliometric overview of international journal of machine learning and cybernetics between 2010 and 2017. Int J Mach Learn Cybern 10(9):2375–2387CrossRefGoogle Scholar
  24. 24.
    Yu DJ et al (2017) Information sciences 1968–2016: a retrospective analysis with text mining and bibliometric. Inf Sci 418:619–634CrossRefGoogle Scholar
  25. 25.
    Yu DJ et al (2017) A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals. Scientometrics 111(1):521–542CrossRefGoogle Scholar
  26. 26.
    Kulczycki E et al (2018) Publication patterns in the social sciences and humanities: evidence from eight European countries. Scientometrics 116(1):463–486CrossRefGoogle Scholar
  27. 27.
    Prins AA et al (2016) Using google scholar in research evaluation of humanities and social science programs: a comparison with web of science data. Res Evaluat 25(3):264–270MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhou W, Xu ZS, Zavadskas EK (2019) A bibliometric overview of international journal of strategic property management between 2008 and 2019. Int J Strateg Prop Manag 23(6):366–377CrossRefGoogle Scholar
  29. 29.
    Huang GB et al (2011) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybernetics) 42(2):513–529CrossRefGoogle Scholar
  30. 30.
    Kong L et al (2007) CPC: assessthe protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35((suppl_2)):345–349CrossRefGoogle Scholar
  31. 31.
    Gu B et al (2014) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416MathSciNetCrossRefGoogle Scholar
  32. 32.
    Huang G et al (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48zbMATHCrossRefGoogle Scholar
  33. 33.
    Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci 102(46):16569–16572zbMATHCrossRefGoogle Scholar
  34. 34.
    Ding Y, Chowdhury GG, Foo S (2001) Bibliometric cartography of information retrieval research by using co-word analysis. Inf Process Manage 37(6):817–842zbMATHCrossRefGoogle Scholar
  35. 35.
    Su HN, Lee PC (2010) Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in technology foresight. Scientometrics 85(1):65–79CrossRefGoogle Scholar
  36. 36.
    Yu DJ, Xu ZS, Wang W (2018) Bibliometric analysis of fuzzy theory research in China: a 30-year perspective. Knowl Based Syst 141:188–199CrossRefGoogle Scholar
  37. 37.
    Zhang YD et al (2016) Facial emotion recognition based on biorthogonal wavelet entropy fuzzy support vector machine and stratified cross validation. IEEE Access 4:8375–8385CrossRefGoogle Scholar
  38. 38.
    Zhang J et al (2016) Comparing keywords plus of WOS and author keywords: a case study of patient adherence research. J Assoc Inf Sci Technol 67(4):967–972CrossRefGoogle Scholar
  39. 39.
    Yu DJ, Xu ZS, Fujita H (2019) Bibliometric analysis on the evolution of applied intelligence. Appl Intell 49(2):449–462CrossRefGoogle Scholar
  40. 40.
    Yu DJ, Xu ZS, Wang WR (2019) A bibliometric analysis of fuzzy optimization and decision making (2002–2017). Fuzzy Optim Decis Making 18(3):371–397zbMATHCrossRefGoogle Scholar
  41. 41.
    Yu DJ, Xu ZS, Šaparauskas J (2019) The evolution of “technological and economic development of economy”: a bibliometric analysis. Technol Econ Dev Econ 25(3):369–385CrossRefGoogle Scholar
  42. 42.
    Hua S, Sun Z (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics 17(8):721–728CrossRefGoogle Scholar
  43. 43.
    Yin S et al (2014) A review on basic data-driven approaches for industrial process monitoring. IEEE Trans Ind Electron 61(11):6418–6428CrossRefGoogle Scholar
  44. 44.
    Tao D et al (2006) Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans Pattern Anal Mach Intell 7:1088–1099Google Scholar
  45. 45.
    Zhang D et al (2011) Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3):856–867CrossRefGoogle Scholar
  46. 46.
    Tsang IW, Kwok JT, Cheung PM (2005) Core vector machines: fast SVM training on very large data sets. J Mach Learn Res 6((Apr)):363–392MathSciNetzbMATHGoogle Scholar
  47. 47.
    Gong P et al (2013) Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM + data. Int J Remote Sens 34(7):2607–2654CrossRefGoogle Scholar
  48. 48.
    Chen C et al (2014) Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens 6(6):5795–5814CrossRefGoogle Scholar
  49. 49.
    Chen Y et al (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Topic Appl Earth Observations and Remote Sensing 7(6):2094–2107CrossRefGoogle Scholar
  50. 50.
    Yan R, Gao RX, Chen X (2014) Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process 96:1–15CrossRefGoogle Scholar
  51. 51.
    Huang GB, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3):155–163CrossRefGoogle Scholar
  52. 52.
    Cen H, He Y (2007) Theory and application of near infrared reflectance spectroscopy indetermination of food quality. Trends Food Sci Technol 18(2):72–83CrossRefGoogle Scholar
  53. 53.
    Chen W et al (2013) iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 41(6):e68–e68CrossRefGoogle Scholar
  54. 54.
    Chou KC, Cai YD (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277(48):45765–45769CrossRefGoogle Scholar
  55. 55.
    Shen J et al (2007) Predicting protein–protein interactions based only on sequences information. Proc Natl Acad Sci 104(11):4337–4341CrossRefGoogle Scholar
  56. 56.
    Hua S, Sun Z (2001) A novel method of protein secondary structure prediction with high segment overlap measure: supportvector machine approach. J Mol Biol 308(2):397–407CrossRefGoogle Scholar
  57. 57.
    Wang WC et al (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374(3–4):294–306CrossRefGoogle Scholar
  58. 58.
    Chou KC, Shen HB (2007) MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 360(2):339–345CrossRefGoogle Scholar
  59. 59.
    Yang H, Chan L, King I (2002) Support vector machine regression for volatile stock market prediction. In: international conference on intelligent data engineering and automated learning, Springer, Berlin, Heidelberg, pp. 391–396CrossRefGoogle Scholar
  60. 60.
    Zhang LD et al (2005) Study on application of fourier transformation near-infrared spectroscopy analysis with support vector machine (SVM). Spectrosc Spectr Anal 25(1):33–35Google Scholar
  61. 61.
    Chou KC, Shen HB (2010) Plant-mPLoc:atop-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5(6):e11335CrossRefGoogle Scholar
  62. 62.
    Niu D, Wang Y, Wu DD (2010) Power load forecasting using support vector machine and ant colony optimization. Expert Syst Appl 37(3):2531–2539CrossRefGoogle Scholar
  63. 63.
    Du P et al (2012) Multiple classifier system for remote sensing image classification: a review. Sensors 12(4):4764–4792MathSciNetCrossRefGoogle Scholar
  64. 64.
    Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Prob Eng.  https://doi.org/10.1155/2015/931256 MathSciNetzbMATHGoogle Scholar
  65. 65.
    Cheng HD, Shan J, Ju W, Guo Y, Zhang L (2010) Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn 43(1):299–317zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Business SchoolNanjing Audit UniversityNanjingChina
  2. 2.Business SchoolSichuan UniversityChengduChina
  3. 3.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations