Advertisement

Three-way decisions in fuzzy incomplete information systems

  • Xiaoping YangEmail author
  • Tongjun Li
  • Anhui Tan
Original Article
  • 37 Downloads

Abstract

The intuitionistic fuzzy set is introduced to fuzzy incomplete information systems, the membership and non-membership degrees that an object belongs to a concept are constructed based on the similarity relation. By combining the fuzzy rough set and intuitionistic fuzzy set, we make three-way decisions. Various situations in fuzzy incomplete information systems are discussed.

Keywords

Intuitionistic fuzzy sets Incomplete information systems Three-way decisions Fuzzy rough sets 

Notes

Acknowledgements

This work is supported by grants from National Natural Science Foundation of China (Nos. 61773349 and 61602415).

References

  1. 1.
    Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Set Syst 20:87–96zbMATHCrossRefGoogle Scholar
  2. 2.
    Azam N, Yao JT (2012) Multiple criteria decision analysis withgame-theoretic rough sets. In: Li T, Nguyen HS, Wang G,Grzymala-Busse JW, Janicki R, Hassanien AE, Yu H (eds) RSKT 2012.LNCS(LNAI), vol. 7414. Springer, Heidelberg, pp 399–408CrossRefGoogle Scholar
  3. 3.
    Bodjanova S (1997) Approximation of fuzzy concepts in decision making. Fuzzy Set Syst 8:23–29MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cornelis C, Cock MD, Kerre EE (2003) Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge. Expert Syst 20:260–270CrossRefGoogle Scholar
  5. 5.
    Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17(2):191–208zbMATHCrossRefGoogle Scholar
  6. 6.
    Fan JC, Li Y, Tang LY, Wu GK (2018) RoughPSO: rough set-based particle swarm optimisation. Int J Bio-Inspired Comput 12(4):245–253CrossRefGoogle Scholar
  7. 7.
    Grzymala-Busse JW, Yao YY (2011) Probabilistic rule induction with the LERS data mining system. Int J Intell Syst 26:518–539CrossRefGoogle Scholar
  8. 8.
    He XL, Wei L, She YH (2018) L-fuzzy concept analysis for three-way decisions: basic definitions and fuzzy inference mechanisms. Int J Mach Learn Cybern 9(11):1857–1867CrossRefGoogle Scholar
  9. 9.
    Herbert JP, Yao JT (2011) Game-theoretic rough sets. Fund Inf 108:267–286MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hu MJ, Yao YY (2019) Structured approximations as a basis for three-way decisions in rough set theory. Int J Approx Reason 165:92–109Google Scholar
  11. 11.
    Jena SP, Ghosh SK (2002) Intuitionistic fuzzy rough sets. Notes Intuit Fuzzy Sets 8:1–18MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jia F, Liu PD (2019) A novel three-way decision model under multiple-criteria environment. Inf Sci 471:29–51MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jia XY, Li WW, Shang L (2019) A multiphase cost-sensitive learning method based on the multiclass three-way decision-theoretic rough set model. Inf Sci 485:248–262CrossRefGoogle Scholar
  14. 14.
    Jia XY, Zhang K, Shang L (2012) Three-way decisions solution tofilter spam email: an empirical study. In: Yao JT, Yang Y, Slowinski R, Greco S, Li H, Mitra S, Polkowski L (eds) RSCTC 2012.LNCS(LNAI), vol 7413. Springer, Heidelberg, pp 287–296CrossRefGoogle Scholar
  15. 15.
    Jiang C, Yao Y (2018) Effectiveness measures in movement-based three-way decisions. Knowl Based Syst 160:136–143CrossRefGoogle Scholar
  16. 16.
    Kryszkiewicz M (1998) Rough set approach to incomplete information systems. Inf Sci 112(1):39–49MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kryszkiewicz M (1999) Rules in incomplete information systems. Inf Sci 113(3):271–292MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Leung Y, Li D (2003) Maximal consistent block technique for rule acqusitioin in incomplete information systems. Inf Sci 153:85–106zbMATHCrossRefGoogle Scholar
  19. 19.
    Leung Y, Wu WZ, Zhang WX (2006) Knowledge acquisition in incomplete information systems: a rough set approach. Eur J Oper Res 168(1):164–180MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Li HX, Zhou XZ (2011) Risk decision making based on decision-theoretic rough set: a three-way view decision model. Int J Comput Intell Syst 4:1–11CrossRefGoogle Scholar
  21. 21.
    Li JY, Wang X, Wu WZ, Xu YH (2017) Attribute reduction in inconsistent formal decision contexts based on congruence relations. Int J Mach Learn Cybern 8(1):81–94CrossRefGoogle Scholar
  22. 22.
    Li W, Miao DQ, Wang WL, Zhang N (2010) Hierarchical rough decision theoretic framework for text classification. In: Proceedings of the 9th ieee international conference on cognitive informatics, pp 484–489Google Scholar
  23. 23.
    Liang DC, Xu ZS, Liu D, Wu Y (2018) Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information. Inf Sci 435:282–295MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu D, Li TR, Li HX (2012) A multiple-category classification approach with decision-theoretic rough sets. Fund Inf 115:173–188MathSciNetzbMATHGoogle Scholar
  25. 25.
    Liu D, Liang DC, Wang C (2016) A novel three-way decision model based on incomplete information system. Knowl Based Syst 91:32–45CrossRefGoogle Scholar
  26. 26.
    Liu D, Liang DC (2017) Three-way decisions in ordered decision system. Knowl Based Syst 137:182–195CrossRefGoogle Scholar
  27. 27.
    Luo C, Li TR, Huang Y, Fujita H (2019) Updating three-way decisions in incomplete multi-scale information systems. Inf Sci 476:274–289CrossRefGoogle Scholar
  28. 28.
    Ma XA, Yao YY (2018) Three-way decision perspectives on class-specific attribute reducts. Inf Sci 450:227–245MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341–356zbMATHCrossRefGoogle Scholar
  30. 30.
    Qian J, Liu CH, Yue XD (2019) Multigranulation sequential three-way decisions based on multiple thresholds. Int J Approx Reason 105:396–416MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ren RS, Wei L, Yao YY (2018) An analysis of three types of partially-known formal concepts. Int J Mach Learn Cybern 9(11):1767–1783CrossRefGoogle Scholar
  32. 32.
    Radziknowska AM (2006) Rough approximation operations based on IFsets. In: Rutkkowski L, Tadeusiewicz R, Zadeh LA, Aurada JM (eds)ICAISC 2006, LNCS(LNAI), vol 4029. Springer,Heidelberg, pp 528–537Google Scholar
  33. 33.
    Wang R, Wang XZ, Kwong S, Xu C (2017) Incorporating diversity and informativeness in multiple-instance active learning. IEEE Trans Fuzzy Syst 25(6):1460–1475CrossRefGoogle Scholar
  34. 34.
    Wang XZ, Wang R, Xu C (2018) Discovering the relationship between generalization and uncertainty by incorporating complexity of classification. IEEE Trans Cybern 48(2):703–715MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang XZ, Xing HJ, Li Y, Hua Q, Dong CR, Pedrycz W (2015) A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans Fuzzy Syst 23(5):1638–1654CrossRefGoogle Scholar
  36. 36.
    Wang XZ, Zhang T, Wang R (2019) Noniterative deep learning: incorporating restricted boltzmann machine into multilayer random weight neural networks. IEEE Trans Syst Man Cybern Syst 49(7):1299–1308CrossRefGoogle Scholar
  37. 37.
    Wong SKM, Ziarko W (1985) A probabilistic model of approximate classification and decision rules with uncertainty in inductive learning, Technical report CS-85-23. University of Regina, Department of Computer ScienceGoogle Scholar
  38. 38.
    Wong SKM, Ziarko W (1987) Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy Set Syst 21:357–362MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Wu WZ, Mi JS, Zhang WX (2003) A generalized fuzzy rough sets. Inf Sci 151:263–282MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Wu WZ, Zhang WX, Li HZ (2003) Knowledge acquisition in incomplete fuzzy information systems via rough set approach. Expert Syst 20(5):280–286CrossRefGoogle Scholar
  41. 41.
    Wu WZ, Zhang WX (2004) Constructive and axiomatic approaches of fuzzy approximation operators. Inf Sci 159(3–4):233–254MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Yang X, Li TR, Fujita H, Liu D (2019) A sequential three-way approach to multi-class decision. Int J Approx Reason 104:108–125MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Yang XP, Yao JT (2012) Modelling multi-agent three-way decisions with decision-theoretic rough sets. Fund Inf 115:157–171MathSciNetzbMATHGoogle Scholar
  44. 44.
    Yang XP, Lu ZJ, Li TJ (2013) Decision-theoretic rough sets in incomplete information system. Fund Inf 126:353–375MathSciNetGoogle Scholar
  45. 45.
    Yang XP, Tan AH (2017) Three-way decisions based on intuitionisticfuzzy sets. In: Polkowski L, Yao Y, Artiemjew P, Ciucci D, Liu D, Slezak D, Zielosko B (eds) IJCRS 2017, LNCS(LNAI), vol. 10314, pp.290–299. Springer, HeidebergGoogle Scholar
  46. 46.
    Yao YY, Wong SKM (1992) A decision theoretic framework for approximating concepts. Int J Man Mach Stud 37(6):793–809CrossRefGoogle Scholar
  47. 47.
    Yao YY (2007) Decision-theoretic rough set models. In: Yao J, Lingras P, Wu WZ, Szczuka M, Cercone NJ, Slezak D (eds) RSKT 2007, LNCS(LNAI), vol 4481. Springer, Heidelberg, pp 1–12Google Scholar
  48. 48.
    Yao YY (2003) Probabilistic approaches to rough sets. Expert Syst 20(5):287–297CrossRefGoogle Scholar
  49. 49.
    Yao YY (2008) Probabilistic rough set approximations. Int J Approx Reason 49:255–271zbMATHCrossRefGoogle Scholar
  50. 50.
    Yao YY (2009) Three-way decision: an interpretation of rules inrough set theory. In: Wen P, Li Y, Polkowski L, Yao Y, Tsumoto H,Wang G (eds) RSKT 2009, LNCS (LNAI), vol 5589. Springer, Heidelberg, pp 642–649CrossRefGoogle Scholar
  51. 51.
    Yao YY (2010) Three-way decisions with probabilistic rough sets. Inf Sci 180:341–353MathSciNetCrossRefGoogle Scholar
  52. 52.
    Yao YY (2011) The superiority of three-way decisions in probabilistic rough set models. Inf Sci 181:1080–1096MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Yao YY (2012) An outline of a theory of three-way decisions. In: Yao JT, Yang Y, Slowinski R, Greco S, Li H, Mitra S, Polkowski L (eds) RSCTC 2012, LNCS (LNAI), vol 7413. Springer,Heidelberg, pp 287–296Google Scholar
  54. 54.
    Yao YY (2018) Three-way decision and granular computing. Int J Approx Reason 103:107–123zbMATHCrossRefGoogle Scholar
  55. 55.
    Yu H, Chu SS, Yang DC (2012) Autonomous knowledge-oriented clustering using decision-theoretic rough set theory. Fund Inf 115:141–156MathSciNetzbMATHGoogle Scholar
  56. 56.
    Zadeh LA (1965) Fuzzy sets Inf. Control 8:338–353MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Zhang QH, Lv QX, Chen YH, Wang GY (2018) A dynamic three-way decision model based on the updating of attribute values. Knowl Based Syst 142:71–84CrossRefGoogle Scholar
  58. 58.
    Zhang WX, Leung Y, Wu WZ (2003) Information system and knowledge discovery. Science Press, BeijingGoogle Scholar
  59. 59.
    Zhou JH, Zhang Y, Zhu HY (2017) Three-way decisions model based on tolerance rough fuzzy set. Int J Mach Learn Cybern 8(1):35–43CrossRefGoogle Scholar
  60. 60.
    Zhou L, Wu WZ (2008) On generalized intuitionistic fuzzy rough approximation operators. Inf Sci 178:2448–2465MathSciNetzbMATHGoogle Scholar
  61. 61.
    Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46(93):39–50MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Ziarko W (2008) Probabilistic approach to rough sets. Int J Approx Reason 49:272–284MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics, Physics and Information ScienceZhejiang Ocean UniversityZhoushanPeople’s Republic of China
  2. 2.Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang ProvinceZhoushanPeople’s Republic of China

Personalised recommendations