Advertisement

A bibliometric overview of International Journal of Machine Learning and Cybernetics between 2010 and 2017

  • Zeshui XuEmail author
  • Dejian Yu
  • Xizhao Wang
Original Article

Abstract

International Journal of Machine Learning and Cybernetics (IJMLC) is one of the influential journals in the area of computer science, and it published its first issue in 2010. On the one hand, taking the 544 IJMLC publications between 2010 and 2017 as the research object, this paper uses bibliometric methods to study the citation characteristics, international cooperation and institutional cooperation, the author’s cooperation rate and cooperation degree, geographical distribution of the IJMLC publications. On the other hand, CiteSpace and Vosviewer, two data visualization software tools, are used to make the comprehensive analysis of the co-occurrence of the author keywords of the IJMLC publications. The document co-citation clusters visualization and burst detection of keywords are also presented to explore the development of the research trends. The research results in this paper provide a basis for further improving the academic level and quality of the IJMLC.

Keywords

Bibliometric Citation and co-citation IJMLC CiteSpace Vosviewer 

Notes

Acknowledgements

The work was supported in part by the China National Natural Science Foundation (nos. 71771155, 71571123).

References

  1. 1.
    Akmal A, Podgorodnichenko N, Greatbanks R, Everett AM (2018) Bibliometric analysis of production planning and control (1990–2016). Prod Plan Control 29(4):333–351CrossRefGoogle Scholar
  2. 2.
    Biggio B, Fumera G, Roli F (2010) Multiple classifier systems for robust classifier design in adversarial environments. Int J Mach Learn Cybern 1(1–4):27–41CrossRefGoogle Scholar
  3. 3.
    Boehm O, Hardoon DR, Manevitz LM (2011) Classifying cognitive states of brain activity via one–class neural networks with feature selection by genetic algorithms. Int J Mach Learn Cybern 2(3):125–134CrossRefGoogle Scholar
  4. 4.
    Borgman CL, Furner J (2002) Scholarly communication and bibliometrics. Ann Rev Inf Sci Technol 36(1):1–53Google Scholar
  5. 5.
    Cancino C, Merigó JM, Coronado F, Dessouky Y, Dessouky M (2017) Forty years of computers and industrial engineering: a bibliometric analysis. Comput Ind Eng 113:614–629CrossRefGoogle Scholar
  6. 6.
    Castillo-Vergara M, Alvarez-Marin A, Placencio-Hidalgo D (2018) A bibliometric analysis of creativity in the field of business economics. J Bus Res 85:1–9CrossRefGoogle Scholar
  7. 7.
    Chacko BP, Krishnan VRV, Raju G, Anto PB (2012) Handwritten character recognition using wavelet energy and extreme learning machine. Int J Mach Learn Cybern 3(2):149–161CrossRefGoogle Scholar
  8. 8.
    Chau KW (2007) Application of a PSO based neural network in analysis of outcomes of construction claims. Autom Constr 16(5):642–646CrossRefGoogle Scholar
  9. 9.
    Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Assoc Inf Sci Technol 57(3):359–377CrossRefGoogle Scholar
  10. 10.
    Chen C, Ibekwe-SanJuan F, Hou J (2010) The structure and dynamics of co-citation clusters: a multiple-perspective cocitation analysis. J Assoc Inf Sci Technol 61(7):1386–1409CrossRefGoogle Scholar
  11. 11.
    Cobo MJ, Martínez MA, Gutiérrez-Salcedo M, Fujita H, Herrera-Viedma E (2015) 25 years at knowledge-based systems: a bibliometric analysis. Knowl Based Syst 80:3–13CrossRefGoogle Scholar
  12. 12.
    Fang Y (2015) Visualizing the structure and the evolving of digital medicine: a scientometrics review. Scientometrics 105(1):5–21CrossRefGoogle Scholar
  13. 13.
    Graaff AJ, Engelbrecht AP (2012) Clustering data in stationary environments with a local network neighborhood artificial immune system. Int J Mach Learn Cybern 3(1):1–26CrossRefGoogle Scholar
  14. 14.
    Gaede J, Rowlands IH (2018) Visualizing social acceptance research: a bibliometric review of the social acceptance literature for energy technology and fuels. Energy Res Soc Sci 40:142–158CrossRefGoogle Scholar
  15. 15.
    Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102(46):16569–16572zbMATHCrossRefGoogle Scholar
  16. 16.
    Hood W, Wilson C (2001) The literature of bibliometrics, scientometrics, and informetrics. Scientometrics 52(2):291–314CrossRefGoogle Scholar
  17. 17.
    Hu QH, Pan W, An S, Ma PJ, Wei JM (2010) An efficient gene selection technique for cancer recognition based on neighborhood mutual information. Int J Mach Learn Cybern 1(1–4):63–74CrossRefGoogle Scholar
  18. 18.
    Hu Y, Sun J, Li W, Pan Y (2014) A scientometric study of global electric vehicle research. Scientometrics 98(2):1269–1282CrossRefGoogle Scholar
  19. 19.
    Huang F, Zhou Q, Leng BJ, Mao QL, Zheng LM, Zuo MZ (2018) A bibliometric and social network analysis of pelvic organ prolapse during 2007–2016. J Chin Med Assoc 81(5):450–457CrossRefGoogle Scholar
  20. 20.
    Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062CrossRefGoogle Scholar
  21. 21.
    Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122CrossRefGoogle Scholar
  22. 22.
    Jun W, Wang ST, Chung FL (2011) Positive and negative fuzzy rule system, extreme learning machine and image classification. Int J Mach Learn Cybern 2(4):261–271CrossRefGoogle Scholar
  23. 23.
    Kim MC, Chen C (2015) A scientometric review of emerging trends and new developments in recommendation systems. Scientometrics 104(1):239–263CrossRefGoogle Scholar
  24. 24.
    Laengle S, Merigó JM, Miranda J, Słowiński R, Bomze I, Borgonovo E, Teunter R (2017) Forty years of the European Journal of Operational Research: a bibliometric overview. Eur J Oper Res 262(3):803–816zbMATHCrossRefGoogle Scholar
  25. 25.
    Lan Y, Soh YC, Huang GB (2009) Ensemble of online sequential extreme learning machine. Neurocomputing 72(13–15):3391–3395CrossRefGoogle Scholar
  26. 26.
    Leydesdorff L, Vaughan L (2006) Co-occurrence matrices and their applications in information science: extending ACA to the Web environment. J Assoc Inf Sci Technol 57(12):1616–1628CrossRefGoogle Scholar
  27. 27.
    Li MB, Huang GB, Saratchandran P, Sundararajan N (2005) Fully complex extreme learning machine. Neurocomputing 68:306–314CrossRefGoogle Scholar
  28. 28.
    Li JH, Mei CL, Kumar CA, Zhang X (2013) On rule acquisition in decision formal contexts. Int J Mach Learn Cybern 4(6):721–731CrossRefGoogle Scholar
  29. 29.
    Liang J, Song W (2012) Clustering based on Steiner points. Int J Mach Learn Cybern 3(2):141–148CrossRefGoogle Scholar
  30. 30.
    Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Process Lett 17(8):754–757CrossRefGoogle Scholar
  31. 31.
    Liu Z, Wu Q, Zhang Y, Chen CP (2011) Adaptive least squares support vector machines filter for hand tremor canceling in microsurgery. Int J Mach Learn Cybern 2(1):37–47CrossRefGoogle Scholar
  32. 32.
    Merigó JM, Blanco-Mesa F, Gil-Lafuente AM, Yager RR (2017) Thirty years of the International Journal of Intelligent Systems: a bibliometric review. Int J Intell Syst 32(5):526–554CrossRefGoogle Scholar
  33. 33.
    Merigó JM, Yang JB (2017) A bibliometric analysis of operations research and management science. Omega 73:37–48CrossRefGoogle Scholar
  34. 34.
    Pritchard A (1969) Statistical bibliography or bibliometrics. J Doc 25(4):348–349Google Scholar
  35. 35.
    Rana S, Jasola S, Kumar R (2013) A boundary restricted adaptive particle swarm optimization for data clustering. Int J Mach Learn Cybern 4(4):391–400CrossRefGoogle Scholar
  36. 36.
    Sharma A, Imoto S, Miyano S, Sharma V (2012) Null space based feature selection method for gene expression data. Int J Mach Learn Cybern 3(4):269–276CrossRefGoogle Scholar
  37. 37.
    Tang Y, Yan PK, Yuan Y, Li XL (2011) Single-image super-resolution via local learning. Int J Mach Learn Cybern 2(1):15–23CrossRefGoogle Scholar
  38. 38.
    Tong DL, Mintram R (2010) Genetic algorithm-neural network (GANN): a study of neural network activation functions and depth of genetic algorithm search applied to feature selection. Int J Mach Learn Cybern 1(1–4):75–87CrossRefGoogle Scholar
  39. 39.
    Tsang EC, Wang XZ, Yeung DS (2000) Improving learning accuracy of fuzzy decision trees by hybrid neural networks. IEEE Trans Fuzzy Syst 8(5):601–614CrossRefGoogle Scholar
  40. 40.
    Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538CrossRefGoogle Scholar
  41. 41.
    Waltman L, van Eck NJ, Noyons EC (2010) A unified approach to mapping and clustering of bibliometric networks. J Inf 4(4):629–635Google Scholar
  42. 42.
    Wang XZ, He YL, Dong LC, Zhao HY (2011) Particle swarm optimization for determining fuzzy measures from data. Inf Sci 181(19):4230–4252zbMATHCrossRefGoogle Scholar
  43. 43.
    Wang XZ, Zhai JH, Lu SX (2008) Induction of multiple fuzzy decision trees based on rough set technique. Inf Sci 178(16):3188–3202MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Wei GW (2016) Interval valued hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. Int J Mach Learn Cybern 7(6):1093–1114CrossRefGoogle Scholar
  45. 45.
    White HD, McCain KW (1998) Visualizing a discipline: an author co-citation analysis of information science, 1972–1995. J Am Soc Inf Sci 49(4):327–355Google Scholar
  46. 46.
    Xiao JZ, Wang HR, Yang XC, Gao Z (2012) Multiple faults diagnosis in motion system based on SVM. Int J Mach Learn Cybern 3(1):77–82CrossRefGoogle Scholar
  47. 47.
    Yang XB, Song XN, Chen ZH, Yang JY (2012) On multigranulation rough sets in incomplete information system. Int J Mach Learn Cybern 3(3):223–232CrossRefGoogle Scholar
  48. 48.
    Ye S, Xing R, Liu J, Xing F (2013) Bibliometric analysis of Nobelists’ awards and landmark papers in physiology or medicine during 1983–2012. Ann Med 45(8):532–538CrossRefGoogle Scholar
  49. 49.
    Yi WG, Lu MY, Liu Z (2011) Multi-valued attribute and multi-labeled data decision tree algorithm. Int J Mach Learn Cybern 2(2):67–74CrossRefGoogle Scholar
  50. 50.
    Yu DJ, Xu ZS, Pedrycz W, Wang WR (2017) Information sciences 1968–2016: a retrospective analysis with text mining and bibliometric. Inf Sci 418:619–634CrossRefGoogle Scholar
  51. 51.
    Yu DJ, Xu ZS, Wang WR (2018) Bibliometric analysis of fuzzy theory research in China: a 30-year perspective. Knowl Based Syst 141:188–199CrossRefGoogle Scholar
  52. 52.
    Yu DJ, Xu ZS, Kao Y, Lin CT (2018) The structure and citation landscape of IEEE Transactions on Fuzzy Systems (1994–2015). IEEE Trans Fuzzy Syst 26(2):430–442CrossRefGoogle Scholar
  53. 53.
    Yu DJ, Xu ZS, Fujita H (2018) Bibliometric analysis on the evolution of applied intelligence. Appl Intell.  https://doi.org/10.1007/s10489-018-1278-z CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Jin R, Zhou ZH (2010) Understanding bag-of-words model: a statistical framework. Int J Mach Learn Cybern 1(1–4):43–52CrossRefGoogle Scholar
  55. 55.
    Zhu W, Wang SP (2011) Matroidal approaches to generalized rough sets based on relations. Int J Mach Learn Cybern 2(4):273–279CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Business SchoolSichuan UniversityChengduChina
  2. 2.Business SchoolNanjing Audit UniversityNanjingChina
  3. 3.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations