Advertisement

Statistical binary patterns and post-competitive representation for pattern recognition

  • Mohamed Anouar Borgi
  • Thanh Phuong Nguyen
  • Demetrio Labate
  • Chokri Ben Amar
Original Article
  • 164 Downloads

Abstract

During the last decade, sparse representations have been successfully applied to design high-performing classification algorithms such as the classical sparse representation based classification (SRC) algorithm. More recently, collaborative representation based classification (CRC) has emerged as a very powerful approach, especially for face recognition. CRC takes advantage of SRC through the notion of collaborative representation, relying on the observation that the collaborative property is more crucial for classification than the l1-norm sparsity constraint on coding coefficients used in SRC. This paper follows the same general philosophy of CRC and its main novelty is the application of a virtual collaborative projection (VCP) routine designed to train images of every class against the other classes to improve fidelity before the projection of the query image. We combine this routine with a method of local feature extraction based on high-order statistical moments to further improve the representation. We demonstrate using extensive experiments of face recognition and classification that our approach performs very competitively with respect to state-of-the-art classification methods. For instance, using the AR face dataset, our method reaches 100% of accuracy for dimensionality 300.

Keywords

Statistical binary pattern Virtual projection Twin collaborative representation Face recognition Image categorization Action recognition 

References

  1. 1.
    Borgi MA, Labate D, El’arbi M, Amar CB (2015) Sparse multi-stage regularized feature learning for robust face recognition. Expert Syst Appl 42(1):269–279CrossRefGoogle Scholar
  2. 2.
    Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRefGoogle Scholar
  3. 3.
    Theodorakopoulos I, Rigas I, Economou G, Fotopoulos S (2011) Face recognition via local sparse coding. In: Proceedings of the ICCV, pp 1647–1652Google Scholar
  4. 4.
    Gao S, Tsang I, Chia L (2010) Kernel sparse representation for image classification and face recognition. In: Proceedings of the ECCV, pp 1–14Google Scholar
  5. 5.
    Yang M, Zhang L (2010) Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In: Proceedings of the ECCV, pp 448–461Google Scholar
  6. 6.
    Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proceedings of the ICCV, pp 625–632Google Scholar
  7. 7.
    Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    He R, Zheng WS, Hu BG (2011) Maximum correntropy criterion for robust face recognition. IEEE Trans Pattern Anal Mach Intell 33(8):1561–1576CrossRefGoogle Scholar
  9. 9.
    Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the ICCV, pp 471–478Google Scholar
  10. 10.
    Yang M, Zhang L, Zhang D, Wang S (2012) Relaxed collaborative representation for pattern classification. In: Proceedings of the ICCV, pp 2224–2231Google Scholar
  11. 11.
    Xu Y, Zhang D, Yang J, Yang J-Y (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mi J-X, Liu J-X (2013) Face recognition using sparse representation-based classification on K-nearest subspace. PLoS ONE 8(3):e59430. doi: 10.1371/journal.pone.0059430 CrossRefGoogle Scholar
  13. 13.
    Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the ICCV, pp 543–550Google Scholar
  14. 14.
    Feng Z, Yang M, Zhang L, Liu Y, Zhang D (2013) Joint discriminative dimensionality reduction and dictionary learning for face recognition. Pattern Recogn 46(8):2134–2143CrossRefGoogle Scholar
  15. 15.
    Gu S, Zhang L, Zuo W et al (2014) Projective dictionary pair learning for pattern classification. In: Proceeding of advances in neural information processing systems, pp 793–801Google Scholar
  16. 16.
    Cai S, Zuo W, Zhang L (2014) Support vector guided dictionary learning. In: Proceedings of the European conference on computer vision, pp 624–639Google Scholar
  17. 17.
    Li Z, Lai Z, Xu Y et al (2015) A locality-constrained and label embedding dictionary learning algorithm for image classification. IEEE Trans Neural Netw Learn Syst. doi: 10.1109/TNNLS.2015.2508025 Google Scholar
  18. 18.
    Cai S, Zhang L, Zuo W, Feng X (2016) A probabilistic collaborative representation based approach for pattern classification. In CVPR, pp 2950–2959Google Scholar
  19. 19.
    Lades M, Vorbrüggen JC, Buhmann J et al (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3):300–311CrossRefGoogle Scholar
  20. 20.
    Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476CrossRefGoogle Scholar
  21. 21.
    Shen L, Bai L (2006) A review on Gabor wavelets for face recognition. Pattern Anal Appl 9(10):273–292MathSciNetCrossRefGoogle Scholar
  22. 22.
    Timo A, Abdenour H, Matti P (2004) Face recognition with local binary patterns. In: Proceedings of the ECCV, pp 469–481Google Scholar
  23. 23.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefzbMATHGoogle Scholar
  24. 24.
    Zhang W, Shan S, Gao W et al (2005) Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In: Proceedings of the ICCV, pp 786–791Google Scholar
  25. 25.
    Zhang W, Shan S, Chen X, Gao W (2009) Are Gabor phases really useless for face recognition?. Pattern Anal Appl 12(3):301–307MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang B, Shan S, Chen X, Gao W (2007) Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68MathSciNetCrossRefGoogle Scholar
  27. 27.
    Xie SF, Shan SG, Chen XL, Chen J (2010) Fusing local patterns of Gabor magnitude and phase for face recognition. IEEE Trans Image Process 19(5):1349–1361MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041CrossRefzbMATHGoogle Scholar
  29. 29.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J. Cognitive. Neuroscience 3(1):71–86Google Scholar
  30. 30.
    Belhumeur PN, Hespanha JP, Kriengman DJ (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRefGoogle Scholar
  31. 31.
    Borgi MA, El’arbi M, Labate D, Amar CB (2015) Regularized directional feature learning for face recognition. Multimedia Tools Appl 74(24):11281–11295CrossRefGoogle Scholar
  32. 32.
    Borgi MA, Labate D, El’Arbi M, Amar CB (2014) Regularized Shearlet network for face recognition using single sample per person. In: Proceedings of the ICASSP, pp 514–518Google Scholar
  33. 33.
    Borgi MA, Labate D, El'arbi M, Amar CB (2014) ShearFace: efficient extraction of anisotropic features for face recognition. In: Proceedings of the ICPR, pp 1806–1811Google Scholar
  34. 34.
    Borgi MA, Labate D, El'arbi M, Amar CB (2014) Sparse multi-regularized shearlet-network using convex relaxation for face recognition. In: Proceedings of the ICPR, pp 4636–4641Google Scholar
  35. 35.
    Borgi MA, Labate D, El'arbi M, Amar CB (2013) Shearlet network-based sparse coding augmented by facial texture features for face recognition. In: Proceedings of the ICIAP, pp 611–620Google Scholar
  36. 36.
    Yang M, Zhang L, Shiu SC, Zhang D (2013) Robust kernel representation with statistical local features for face recognition. IEEE Trans Neural Netw Learn Syst 24(6):900–912CrossRefGoogle Scholar
  37. 37.
    Nguyen TP, Vu NS, Manzanera A (2016) Statistical binary patterns for rotational invariant texture classification. Neurocomputing 173:1565–1577CrossRefGoogle Scholar
  38. 38.
    Guo ZH, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Ojala T, Maenpaa T, Pietikainen M et al (2002) Outex—new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the ICPR, pp 701–706Google Scholar
  40. 40.
    Martinez A, Benavente R (1998) The AR face database. CVC technical report 24Google Scholar
  41. 41.
    Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE PAMI 23(6):643–660CrossRefGoogle Scholar
  42. 42.
    Lee K, Ho J, Kriegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE PAMI 27(5):684–698CrossRefGoogle Scholar
  43. 43.
    Li SZ, Lu J (1999) Face recognition using nearest feature line method. IEEE Trans Neural Netw 10(2):439–443CrossRefGoogle Scholar
  44. 44.
    Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112CrossRefGoogle Scholar
  45. 45.
    Wang JJ, Yang JC et al (2010) Locality-constrained linear coding for image classification. In: Proceedings of the CVPR, pp 3360–3371Google Scholar
  46. 46.
    Gross R, Matthews I et al (2010) Multi-PIE. Image Vis Comput 28(5):807–813CrossRefGoogle Scholar
  47. 47.
    Georgia Tech Face Database (2007). http://www.anefian.com/face_reco.htm
  48. 48.
    Phillips PJ, Flynn PJ et al (2005) Overview of the face recognition grand challenge. In: Proceedings of the CVPR, pp 947–954Google Scholar
  49. 49.
    Zhang L, Yang M et al (2011) Collaborative representation based classification for face recognition. Technical report. arXiv: 1204.2358Google Scholar
  50. 50.
    Borgi MA, El’arbi M, Labate D, Amar CB (2014) Face, gender and race classification using multi-regularized features learning. In: Proceedings of the ICIP, pp 5277–5281Google Scholar
  51. 51.
    Thomaz E, Giraldi GA (2010) A new ranking method for principal components analysis and its application to face image analysis. Image Vis Comput 28(6):902–913CrossRefGoogle Scholar
  52. 52.
    Yang M, Zhang L, Feng X, Zhang D (2014) Sparse representation based fisher discrimination dictionary learning for image classification. Int J Comput Vis 109(3):209–232MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Nilsback M, Zisserman A (2006) A visual vocabulary for flower classification. In: Proceedings of the CVPR, pp 1447–1454Google Scholar
  54. 54.
    Yuan XT, Yan SC (2010) Visual classification with multitask joint sparse representation. In: Proceedings of the CVPR, pp 3493–3500Google Scholar
  55. 55.
    Nilsback M, Zisserman A (2008) Automated flower classification over a large number of classes. In: Proceedings of the ICCVGIP, pp 722–729Google Scholar
  56. 56.
    Gehler P, Nowozin S (2009) On feature combination for multiclass object classification. In: Proceedings of the ICCV, pp 221–228Google Scholar
  57. 57.
    Rodriguez MD, Ahmed J, Shah M (2008) Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In: Proceedings of the CVPRGoogle Scholar
  58. 58.
    Sadanand S, Corso JJ (2012) Action bank: a high-level representation of activity in video. In: Proceedings of the CVPR, pp 1234–1241Google Scholar
  59. 59.
    Yao A, Gall J, Van Gool LJ (2010) A hough transform-based voting framework for action recognition. In: Proceedings of the CVPR, pp 2061–2068Google Scholar
  60. 60.
    Yeffet L, Wolf L (2009) Local trinary patterns for human action recognition. In: Proceedings of the ICCV, pp 492–497Google Scholar
  61. 61.
    Wang H, Ullah MM et al (2009) Evaluation of local spatio-temporal features for action recognition. In: Proceedings of the BMVC, pp 1–11Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohamed Anouar Borgi
    • 1
  • Thanh Phuong Nguyen
    • 2
    • 3
  • Demetrio Labate
    • 4
  • Chokri Ben Amar
    • 1
  1. 1.Research Groups on Intelligent MachinesUniversity of SfaxSfaxTunisia
  2. 2.Aix Marseille Université, CNRS, ENSAM, LSIS, UMR 7296MarseilleFrance
  3. 3.Université de Toulon, CNRS, LSIS, UMR 7296La GardeFrance
  4. 4.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations