A weighted SOM for classifying data with instance-varying importance

  • Peter Sarlin
Original Article


This paper presents a weighted self-organizing map (WSOM) that combines the advantages of the standard SOM paradigm with learning that accounts for instance-varying importance. While the learning of the classical batch SOM weights data by a neighborhood function, it is here augmented with a user-specified instance-specific importance weight for cost-sensitive classification. By focusing on instance-specific importance to the learning of a SOM, we take a perspective that goes beyond the common approach of incorporating a cost matrix into the objective function of a classifier. This paper provides evidence of the performance of the WSOM on standard benchmark and real-world data. We compare the WSOM with a classical SOM and a conventional statistical approach in two financial classification tasks: credit scoring and financial crisis prediction. The significance of instance-varying importance weights, and the performance of the WSOM, is confirmed by being superior in terms of cost-sensitive classifications.


Weighted self-organizing map Instance-varying cost Cost sensitive classification Cost-sensitive clustering 


  1. 1.
    Barreto G (2007) Time series prediction with the self-organizing map: A review. In: Hitzler P, Hammer B (eds) Perspectives on neural-symbolic integration. Springerg, Berlin, pp 135–158CrossRefGoogle Scholar
  2. 2.
    Blake C, Merz C (1998) UCI repository of machine learning databases.
  3. 3.
    Candelon B, Dumitrescu E, Hurlin C (2012) How to evaluate an early warning system? Towards a unified statistical framework for assessing financial crises forecasting methods. IMF Econ Rev 60(1):75–113CrossRefGoogle Scholar
  4. 4.
    Chappell G, Taylor J (1993) The temporal Kohonen map. Neural Netw 6:441–445CrossRefGoogle Scholar
  5. 5.
    Elkan C (2001) The foundations of cost-sensitive learning. In: Proceedings of the international joint conference on artificial intelligence (IJCAI 01), pp 973–978Google Scholar
  6. 6.
    Fawcett F (2006) ROC graphs with instance-varying costs. Pattern Recogn Lett 27(8):882–891CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fawcett F (2008) PRIE: a system for generating rulelists to maximize ROC performance. Data Min Knowl Disc 17(2):207–224CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fawcett T, Foster J (1997) Provost: adaptive fraud detection. Data Min Knowl Disc 1(3):291–316CrossRefGoogle Scholar
  9. 9.
    Forte JC, Letrémy P, Cottrell M (2002) Advantages and drawbacks of the Batch Kohonen algorithm. In: Proceedings of the European symposium on artificial neural networks (ESANN 02), Springer, Berlin, pp 223–230Google Scholar
  10. 10.
    Fuertes A-M, Kalotychou E (2006) Early warning systems for sovereign debt crises: the role of heterogeneity. Comput Stat Data Anal 51(2):1420–1441CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fuertes A-M, Kalotychou E (2007) Towards the optimal design of an early warning system for sovereign debt crises. Int J Forecast 23(1):85–100CrossRefGoogle Scholar
  12. 12.
    Hand DJ (2009) Mining the past to determine the future: problems and possibilities. Int J Forecast 25(3):441–451CrossRefGoogle Scholar
  13. 13.
    Hollmén J, Skubacz M (2000) Input dependent misclassification costs for cost-sensitive classifiers. In: Proceedings of the international conference on data miningGoogle Scholar
  14. 14.
    Kangas J (1995) Sample weighting when training self-organizing maps for image compression. In: Proceedings of the 1995 IEEE workshop on neural networks for signal processing, pp 343–350Google Scholar
  15. 15.
    Kaski S, Honkela T, Lagus K, Kohonen T (1998) WEBSOM—self-organizing maps of document collections. Neurocomputing 21:101–117CrossRefzbMATHGoogle Scholar
  16. 16.
    Kim KY, Ra JB (1993) Edge preserving vector quantization using self-organizing map based on adaptive learning. In: Proceedings of the international joint conference on neural networks (IJCNN 93), vol 11. IEEE Press, pp 1219–1222Google Scholar
  17. 17.
    Kohonen T (1991) The Hypermap architecture. In: Kohonen T, Mäkisara K, Simula O, Kangas J (eds) Artificial neural networks, vol II. Elsevier, Amsterdam, pp 1357–1360Google Scholar
  18. 18.
    Kohonen T (1993) Things you haven’t heard about the Self-Organizing Map. In: Proceedings of the international conference on neural networks (ICNN 93), pp 1147–1156Google Scholar
  19. 19.
    Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, BerlinCrossRefzbMATHGoogle Scholar
  20. 20.
    Kumar M, Moorthy U, Perraudin W (2003) Predicting emerging market currency crashes. J Empir Finance 10(4):427–454CrossRefGoogle Scholar
  21. 21.
    Lo Duca M, Peltonen T (2013) Assessing systemic risks and predicting systemic events. J Banking Finance 37(7):2183–2195Google Scholar
  22. 22.
    Lomax S, Vadera S (2013) A survey of cost-sensitive decision tree induction algorithms. ACM Comput Surv 45(2):16:1–16:35Google Scholar
  23. 23.
    Reinhart CM, Rogoff KS (2008) Is the 2007 US sub-prime financial crisis so different? An international historical comparison. Am Econ Rev 98(2):339–344CrossRefGoogle Scholar
  24. 24.
    Reinhart CM, Rogoff KS (2009) The aftermath of financial crises. Am Econ Rev 99(2):466–472CrossRefGoogle Scholar
  25. 25.
    Sarlin P (2012a) Data and dimension reduction for visual financial performance analysis. TUCS Technical Report 1049, May 2012Google Scholar
  26. 26.
    Sarlin P (2012b) Visual tracking of the millennium development goals with a fuzzified self-organizing neural network. Int J Mach Learn Cybern 3(3):233–245CrossRefGoogle Scholar
  27. 27.
    Sarlin P (2013a) On policymakers’ loss functions and the evaluation of early warning systems. Econ Let 119(1):1–7Google Scholar
  28. 28.
    Sarlin P (2013b) Self-organizing time map: an abstraction of temporal multivariate patterns. Neurocomputing 99(1):496–508CrossRefGoogle Scholar
  29. 29.
    Sarlin P, Peltonen TA (2013) Mapping the state of financial stability. J Int Financial Mark Inst Money. doi: 10.1016/j.intfin.2013.05.002
  30. 30.
    Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (1999) Self-organizing map in Matlab: the SOM Toolbox. In: Proceedings of the Matlab DSP conference, pp 35–40Google Scholar
  31. 31.
    Yao Z, Sarlin P, Eklund T, Back B (2012) Combining visual customer segmentation and response modeling. IN: Proceedings of the European conference on information systems (ECIS 12), June 2012Google Scholar
  32. 32.
    Zadrozny B, Elkan C (2001) Learning and making decisions when costs and probabilities are both unknown. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (KDD 01), pp 204–213Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Information Technologies, Turku Centre for Computer ScienceÅbo Akademi UniversityTurkuFinland

Personalised recommendations