Advertisement

A fuzzy taxonomy for e-Health projects

  • Pierpaolo D’Urso
  • Livia De Giovanni
  • Paolo Spagnoletti
Original Article

Abstract

Evaluating the impact of Information Technology (IT) projects represents a problematic task for policy and decision makers aiming to define roadmaps based on previous experiences. Especially in the healthcare sector IT can support a wide range of processes and it is difficult to analyze in a comparative way the benefits and results of e-Health practices in order to define strategies and to assign priorities to potential investments. A first step towards the definition of an evaluation framework to compare e-Health initiatives consists in the definition of clusters of homogeneous projects that can be further analyzed through multiple case studies. However imprecision and subjectivity affect the classification of e-Health projects that are focused on multiple aspects of the complex healthcare system scenario. In this paper we apply a method, based on advanced cluster techniques and fuzzy theories, for validating a project taxonomy in the e-Health sector. An empirical test of the method has been performed over a set of European good practices in order to define a taxonomy for classifying e-Health projects.

Keywords

e-Health Healthcare Fuzzy clustering Imprecise evaluation scales Soft taxonomy 

Notes

Acknowledgments

We wish to thank the referees and the Editor for their useful comments and suggestions which helped to improve the quality and presentation of this manuscript.

References

  1. 1.
    Aanestad M, Jensen TB (2011) Building nation-wide information infrastructures in healthcare through modular implementation strategies. J Strateg Inf Syst 20(2):161–176CrossRefGoogle Scholar
  2. 2.
    Anderson DT, Bezdek JC, Popescu M, Keller JM (2010) Comparing fuzzy probabilistic, and possibilistic partitions. IEEE Trans Fuzzy Syst 18:906–918CrossRefGoogle Scholar
  3. 3.
    Barlow J, Bayer S, Curry R (2006) Implementing complex innovations in fluid multi-stakeholder environments: experiences of ‘telecare’. Technovation 26:396–406CrossRefGoogle Scholar
  4. 4.
    Bates DW (2005) Physicians and ambulatory electronic health records. Health Aff 24(5):1180–1189MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bezdek JC (1981) Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Blei M, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J. Mach. Learn. Res. 3:993–1022MATHGoogle Scholar
  7. 7.
    Campello RJGB (2007) A fuzzy extension of the rand index and other related indexes for clustering and classification assessment. Pattern Recogn Lett 28:833–841CrossRefGoogle Scholar
  8. 8.
    Cannon RL, Davè JV, Bezdek JC (1986) Efficient implementation of the fuzzy C-means clustering algorithm. IEEE Trans Pattern Anal Mach Intell 8:248–255CrossRefMATHGoogle Scholar
  9. 9.
    Ciborra C, Braa K et al (2000) From control to drift: the dynamics of corporate information infrastructures. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Colubi A, González-Rodríguez G, Gil MA, Trutschnig W (2011) Nonparametric criteria for supervised classification of fuzzy data. Int J Approx Reason 52:1272–1282CrossRefMATHGoogle Scholar
  11. 11.
    Coppi, R. (2003) The fuzzy approach to multivariate statistical analysis, Technical report, Dipartimento di Statistica, Probabilità e Statistiche Applicate, Sapienza Università di Roma, n. 11Google Scholar
  12. 12.
    Coppi R, D’Urso P, Giordani P (2012) Fuzzy and possibilistic clustering models for fuzzy data. Comput Stat Data Anal 56:915–927MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Coppi R, Giordani P, D’Urso P (2006) Component models for fuzzy data. Psychometrika 71:733–761MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dixon BE (2007) A roadmap for the adoption of e-Health. E-Serv J 5(3):3–13CrossRefGoogle Scholar
  15. 15.
    D’Urso P (2007) Clustering of fuzzy data. In: de Oliveira JV, Pedrycz W (eds) Advances in Fuzzy Clustering and Its Applications. Wiley, New York, pp 155–192CrossRefGoogle Scholar
  16. 16.
    D’Urso P, Giordani P (2006) A weighted fuzzy c-means clustering model for fuzzy data. Comput Stat Data Anal 50:1496–1523MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    European Commission (2008) Information Society and Media Directorate-Genaral. Expert Impact Assessment. http://kb.good-ehealth.org/search.do
  18. 18.
    European Commission (2009) Good eHealth Report-eHealth in Action Good Practice in European Countries. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  19. 19.
    Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn. Arnold Press, LondonMATHGoogle Scholar
  20. 20.
    Fadili MJ, Ruan S, Bloyet D, Mazoyer B (2001) On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Med Image Anal 5:55–67CrossRefGoogle Scholar
  21. 21.
    Fitterer R, Mettler T, Rohner P, Winter R (2011) Taxonomy for multi-perspective assessment of the value of health information systems. Int J Healthc Technol Manag 12(1):45–61CrossRefGoogle Scholar
  22. 22.
    Glaser BG, Strauss AL (1967) The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Publishing Company, ChicagoGoogle Scholar
  23. 23.
    González-Rodríguez G, Colubi A, Gil MA (2012) Fuzzy data treated as functional data: a one-way ANOVA test approach, Comput Stat Data Anal. (in press)Google Scholar
  24. 24.
    Graaff AJ, Engelbrecht AP (2012) Clustering data in stationary environments with a local network neighborhood artificial immune system. Int J Mach Learn Cybern. doi: 10.1007/s13042-011-0041-0 Google Scholar
  25. 25.
    Gregor S (2006) The nature of theory in information systems. MIS Q 30(3):611–642Google Scholar
  26. 26.
    Guo G, Chen S, Chen L (2012) Soft subspace clustering with an improved feature weight self-adjustment mechanism. Int J Mach Learn Cybern. doi: 10.1007/s13042-011-0038-8 Google Scholar
  27. 27.
    Hall LO, Bensaid AM, Clarke LP (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3:672–682CrossRefGoogle Scholar
  28. 28.
    Hanseth O, Aanestad M (2003) Design as bootstrapping. On the evolution of ICT network in healthcare. Methods Inf Med 42:385–391Google Scholar
  29. 29.
    Hanseth O, Lyytinen K (2010) Design theory for dynamic complexity in information infrastructures: the case of building internet. J Inf Technol 25:1–19CrossRefGoogle Scholar
  30. 30.
    Hawgood J, Land F (1988) A multivalent approach to information systems assessment. In: Bjorn-Andersen N, Davis GB (eds) Information Systems Assessment: Issues and Challenges. North Holland, Amsterdam, pp 103–124Google Scholar
  31. 31.
    Heiser WJ, Groenen PJF (1997) Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima. Psychometrika 62:63–83MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Herriott RE, Firestone WA (1983) Multisite qualitative policy research: optimizing description and generalizability. Educ Res 12:14–19Google Scholar
  33. 33.
    Hung WL, Yang MS (2005) Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation. Fuzzy Sets Syst 150:561–577MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Hwang H, DeSarbo WS, Takane Y (2007) Fuzzy clusterwise generalized structured component analysis. Psychometrika 72:181–198MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Irani Z, Love PED (2002) Developing a frame of reference for ex-ante IT/IS investment evaluation. Eur J Inf Syst 11(1):74–82CrossRefGoogle Scholar
  36. 36.
    Irani Z, Love PED (2008) Evaluating Information Systems: Public and Private Sector. Butterworth-Heinemann, OxfordGoogle Scholar
  37. 37.
    Irani Z, Sharif A, Love PED, Kahraman C (2002) Applying concepts of fuzzy logic cognitive mapping to model: the IT/IS investment evaluation process. Int J Prod Econ 75:199–211CrossRefGoogle Scholar
  38. 38.
    Lafky DB, Tulu B, Horan TA (2006) A User-driven approach to personal health records. Commun Assoc Inf Syst 17(46):1028–1041Google Scholar
  39. 39.
    Liang J, Song W (2012) Clustering based on Steiner points. Int J Mach Learn Cybern. doi: 10.1007/s13042-011-0047-7 Google Scholar
  40. 40.
    Mac Queen JB (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp Math Stat Prob 2:281–297MathSciNetGoogle Scholar
  41. 41.
    Maharaj EA, D’Urso P (2011) Fuzzy clustering of time series in the frequency domain. Inf Sci 181:1187–1211CrossRefMATHGoogle Scholar
  42. 42.
    Mantzana V, Themistocleous M, Irani Z, Morabito V (2007) Identifying healthcare actors involved in the adoption of information systems. Eur J Inf Syst 16(1):91–102CrossRefGoogle Scholar
  43. 43.
    McBratney AB, Moore AW (1985) Application of fuzzy sets to climatic classification. Agric For Meteorol 35:165–185CrossRefGoogle Scholar
  44. 44.
    McKelvey B (1982) Organizational Systematics—Taxonomy, Evolution, Classification, University of California Press, Berkeley, CAGoogle Scholar
  45. 45.
    Menachemi N, Burke DE, Ayers D (2004) Factors affecting the adoption of telemedicine—a multiple adopter perspective. J Med Syst 28(6):617–632CrossRefGoogle Scholar
  46. 46.
    Mitchell J (2000) Increasing the cost-effectiveness of telemedicine by embracing e-Health. J Telemed Telecare 6:S16–S19CrossRefGoogle Scholar
  47. 47.
    Nagendran S, Moores D, Spooner R, Triscott J (2000) Is telemedicine a subset of medical informatics? J Telemed Telecare 6(Suppl. 2):50–51CrossRefGoogle Scholar
  48. 48.
    Ozkan I, Turksen IB (2007) Upper and lower values for the level of fuzziness in FCM. Inf Sci 177:5143–5152CrossRefMATHGoogle Scholar
  49. 49.
    Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3:370–379CrossRefGoogle Scholar
  50. 50.
    Sinova B, Gil MA, Colubi A, Van Aelst S (2012) The median of a random fuzzy number. The 1-norm distance approach, Fuzzy Sets Syst. (in press)Google Scholar
  51. 51.
    Smithson S, Hirschheim R (1998) Analysing information systems evaluation: another look at an old problem. Eur J Inf Syst 7(3):158–174CrossRefGoogle Scholar
  52. 52.
    Soreson JA, Wang X (1996) ROC methods for evaluation of fMRI techniques. Magn Res Med 36:737–744CrossRefGoogle Scholar
  53. 53.
    Spagnoletti P, Albano V, Caccetta E, Tarquini R, D’Atri A (2011) “Supporting policy definition in the e-Health domain: a QCA based method”. In: HEALTHINF—International conference on health informatics, 26–29 January, Roma, Italy Google Scholar
  54. 54.
    Stockdale R, Standing C, Love PED, Irani Z (2008) Revisiting the content, context and process of IS evaluation. In: Irani Z, Love PED (eds) Evaluating Information Systems, Public and Private Sector. Butterworth-Heinemann, Oxford, pp 35–45CrossRefGoogle Scholar
  55. 55.
    Wedel M, Kamakura WA (1998) Market segmentation: Conceptual and methodological foundations. Kluwer Academic, BostonGoogle Scholar
  56. 56.
    Wilson V (2003) Asynchronous health care communication. Commun ACM 46(6):79–84CrossRefGoogle Scholar
  57. 57.
    Yin RK (2009) Case Study Research: Design and Methods, 4th edn. SAGE Publications, CaliforniaGoogle Scholar
  58. 58.
    Yusof MM, Kuljis J, Papazafeiropoulou A, Stergioulas LK (2008) An evaluation framework for health information systems: human, organization and technology-fit factors (HOT-fit). Int J Med Inform 77(6):386–398CrossRefGoogle Scholar
  59. 59.
    Yusof MM, Papazafeiropoulou A, Paul RJ, Stergioulas LK (2008) Investigating evaluation frameworks for health information systems. Int J Med Inform 77(6):377–385CrossRefGoogle Scholar
  60. 60.
    Zadeh LA (2005) Toward a generalized theory of uncertainty (GTU)—an outline. Inf Sci 172:1–40MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Pierpaolo D’Urso
    • 1
  • Livia De Giovanni
    • 2
  • Paolo Spagnoletti
    • 3
  1. 1.Department of Social SciencesSapienza-University of RomeRomeItaly
  2. 2.Department of Political ScienceLUISS Guido Carli UniversityRomeItaly
  3. 3.CeRSI-LUISS Guido Carli UniversityRomeItaly

Personalised recommendations