Positron Emission Tomography After Ischemic Brain Injury: Current Challenges and Future Developments

  • Zhuoran Wang
  • Conrad Mascarenhas
  • Xiaofeng JiaEmail author
Review Article


Positron emission tomography (PET) is widely used in clinical and animal studies, along with the development of diverse tracers. The biochemical characteristics of PET tracers may help uncover the pathophysiological consequences of cardiac arrest (CA) and ischemic stroke, which include cerebral ischemia and reperfusion, depletion of oxygen and glucose, and neuroinflammation. PubMed was searched for studies of the application of PET for “cardiac arrest,” “ischemic stroke,” and “targeted temperature management.” Available studies were included and classified according to the biochemical properties involved and metabolic processes of PET tracers, and were summarized. The mechanisms of ischemic brain injuries were investigated by PET with various tracers to elucidate the pathological process from the initial decrease of cerebral blood flow (CBF) to the subsequent abnormalities in energy and oxygen metabolism, to the monitoring of inflammation. In general, the trends of cerebral blood flow and oxygen metabolism after ischemic attack are not unidirectional but closely related to the time point of injury and recovery. Glucose metabolism after injury showed significant differences in different brain regions whereas global cerebral metabolic rate of glucose (CMRglc) declined. PET monitoring of neuroinflammation shows comparable efficacy to immunostaining. The technology of PET targeting in brain metabolism and the development of tracers provide new tools to track and evaluate the brain’s pathological changes after ischemic brain injury. Despite no existing evidence for an available PET-based prediction method, discoveries of new tracers are expected to provide more possibilities for the whole field.


Positron emission tomography (PET) Ischemic brain injury Cardiac arrest Ischemic stroke Neuroinflammation 


Funding Information

This study was partially supported by R01HL118084 and R01NS110387 from United States National Institutes of Health (both to XJ).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Andersen LW, Holmberg MJ, Berg KM, Donnino MW, Granfeldt A. In-hospital cardiac arrest: a review. Jama. 2019;321:1200–10.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133:447–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, et al. Nlrp3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One. 2015;10:e0130624.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Fukuda T, Ohashi-Fukuda N, Matsubara T, Doi K, Kitsuta Y, Nakajima S, et al. Trends in outcomes for out-of-hospital cardiac arrest by age in japan: an observational study. Medicine (Baltimore). 2015;94:e2049.CrossRefGoogle Scholar
  5. 5.
    Guan R, Zou W, Dai X, Yu X, Liu H, Chen Q, et al. Mitophagy, a potential therapeutic target for stroke. J Biomed Sci. 2018;25:87.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Reis C, Akyol O, Araujo C, Huang L, Enkhjargal B, Malaguit J, et al. Pathophysiology and the monitoring methods for cardiac arrest associated brain injury. Int J Mol Sci. 2017;18.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kass IS, Lipton P. Calcium and long-term transmission damage following anoxia in dentate gyrus and ca1 regions of the rat hippocampal slice. J Physiol. 1986;378:313–34.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Smith ML, von Hanwehr R, Siesjo BK. Changes in extra- and intracellular ph in the brain during and following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab. 1986;6:574–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Sunagawa S, Buist RJ, Hruska FE, Sutherland GR, Peeling J. Hydrogen ion compartmentation during and following cerebral ischemia evaluated by 31p nmr spectroscopy. Brain Res. 1994;641:328–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang Q, Huang Q, Hu Z, Tang X. Potential neuroprotective treatment of stroke: targeting excitotoxicity, oxidative stress, and inflammation. Front Neurosci. 2019;13:1036.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chen HS, Chen X, Li WT, Shen JG. Targeting rns/caveolin-1/mmp signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery. Acta Pharmacol Sin. 2018;39:669–82.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab. 2014;34:1573–84.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol. 2010;87:779–89.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276:13–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhong YH, Dhawan J, Kovoor JA, Sullivan J, Zhang WX, Choi D, et al. Aromatase and neuroinflammation in rat focal brain ischemia. J Steroid Biochem Mol Biol. 2017;174:225–33.PubMedCrossRefGoogle Scholar
  16. 16.
    Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17:796–808.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Spite M, Serhan CN. Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins. Circ Res. 2010;107:1170–84.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Denes A, Vidyasagar R, Feng J, Narvainen J, McColl BW, Kauppinen RA, et al. Proliferating resident microglia after focal cerebral ischaemia in mice. J Cereb Blood Flow Metab. 2007;27:1941–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Karapetkova M, Koenig MA, Jia X. Early prognostication markers in cardiac arrest patients treated with hypothermia. Eur J Neurol. 2016;23:476–88.PubMedCrossRefGoogle Scholar
  20. 20.
    Kirkman MA. The role of imaging in the development of neurosurgery. J Clin Neurosci. 2015;22:55–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM. Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med. 1975;16:210–24.PubMedGoogle Scholar
  22. 22.
    Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (pett). Radiology. 1975;114:89–98.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamaki T, Uchino Y, Henmi H, Kamezawa M, Hayakawa M, Uchida T, et al. Increased brain glucose metabolism in chronic severe traumatic brain injury as determined by longitudinal 18f-fdg pet/ct. J Clin Neurosci. 2018;57:20–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Van de Bittner GC, Riley MM, Cao L, Ehses J, Herrick SP, Ricq EL, et al. Nasal neuron pet imaging quantifies neuron generation and degeneration. J Clin Invest. 2017;127:681–94.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shi X, Yi C, Wang X, Zhang B, Chen Z, Tang G, et al. 13n-ammonia combined with 18f-fdg could discriminate between necrotic high-grade gliomas and brain abscess. Clin Nucl Med. 2015;40:195–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Koopman T, Yaqub M, Heijtel DF, Nederveen AJ, van Berckel BN, Lammertsma AA, et al. Semi-quantitative cerebral blood flow parameters derived from non-invasive [(15)o]h2o pet studies. J Cereb Blood FlowMetab. 2019;39:163–72.CrossRefGoogle Scholar
  27. 27.
    Sasikumar A, Joy A, Pillai MR, Nanabala R, Anees KM, Jayaprakash PG, et al. Diagnostic value of 68ga psma-11 pet/ct imaging of brain tumors-preliminary analysis. Clin Nucl Med. 2017;42:e41–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Kostenikov NA, Zhuikov BL. Application of (82) sr/(82) rb generator in neurooncology. 2019;9:e01212.Google Scholar
  29. 29.
    Lesniak WG, Chu C, Jablonska A, Du Y, Pomper MG, Walczak P, et al. A distinct advantage to intraarterial delivery of (89)zr-bevacizumab in pet imaging of mice with and without osmotic opening of the blood-brain barrier. J Nucl Med. 2019;60:617–22.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral pet scanning: from physiology to cutting-edge technology. Neurology. 2013;80:952–6.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Miletich RS. Positron emission tomography and single-photon emission computed tomography in neurology. Continuum (Minneapolis, Minn.). 2016;22:1636–54.Google Scholar
  32. 32.
    Aoe J, Watabe T, Shimosegawa E, Kato H, Kanai Y, Naka S, et al. Evaluation of the default-mode network by quantitative (15)o-pet: comparative study between cerebral blood flow and oxygen consumption. Ann Nucl Med. 2018;32:485–91.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Iguchi S, Moriguchi T, Yamazaki M, Hori Y, Koshino K, Toyoda K, et al. System evaluation of automated production and inhalation of (15)o-labeled gaseous radiopharmaceuticals for the rapid (15)o-oxygen pet examinations. EJNMMI physics. 2018;5:37.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nakata N, Kiriu M, Okumura Y, Zhao S, Nishijima KI, Shiga T, et al. Comparative evaluation of [(18)f] difa and its analogs as novel hypoxia positron emission tomography and [(18)f] fmiso as the standard. Nucl Med Biol. 2019;70:39–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Brain pet poster sessions pp01-m01 to pp02-n07. J Cereb Blood Flow Metab. 2019;39:524–608.Google Scholar
  36. 36.
    Yamaki T, Onodera S, Uchida T, Ozaki Y, Yokoyama K, Henmi H, et al. Semi-quantitative assessment using [18f] fdg tracer in patients with severe brain injury. Journal of visualized experiments : JoVE. 2018.Google Scholar
  37. 37.
    Schmid JS, Schirbel A, Buck AK, Kropf S, Wester HJ, Lapa C. [68ga]pentixafor-positron emission tomography/computed tomography detects chemokine receptor cxcr4 expression after ischemic stroke. Circ Cardiovasc Imaging. 2016;9:e005217.PubMedCrossRefGoogle Scholar
  38. 38.
    Darcourt J, Schiazza A, Sapin N, Dufour M, Ouvrier MJ, Benisvy D, et al. 18f-fdopa pet for the diagnosis of parkinsonian syndromes. Q J Nucl Med Mol Imaging. 2014;58:355–65.PubMedGoogle Scholar
  39. 39.
    Stenkrona P, Matheson GJ, Cervenka S, Sigray PP, Halldin C, Farde L. [(11)c]sch23390 binding to the d1-dopamine receptor in the human brain—a comparison of manual and automated methods for image analysis. EJNMMI Res. 2018;8:74.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hamilton JP, Sacchet MD, Hjornevik T, Chin FT, Shen B, Kampe R, et al. Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent (11)c-raclopride positron emission tomography and functional magnetic resonance imaging investigation. 2018;8:264.Google Scholar
  41. 41.
    Lopes Alves I, Vallez Garcia D, Parente A, Doorduin J, da Silva AMM, Koole M, et al. Parametric imaging of [(11)c] flumazenil binding in the rat brain. Mol Imaging Biol. 2018;20:114–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Rodman AM, Deckersbach T, Chou T, Kong J, Gollub RL, Dougherty DD. A preliminary study of the opioid system and personality traits using positron emission tomography. Mol Neuropsychiatry. 2017;3:12–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zhao J, Chen Z, Cai L, Yin S, Yang W, Wang Z. Quantitative volumetric analysis of primary glioblastoma multiforme on mri and 11c-methionine pet: initial study on five patients. Neurol Neurochir Pol. 2019.Google Scholar
  44. 44.
    Plaven-Sigray P, Matheson GJ, Cselenyi Z, Jucaite A, Farde L, Cervenka S. Test-retest reliability and convergent validity of (r)-[(11)c]pk11195 outcome measures without arterial input function. EJNMMI Res. 2018;8:102.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Toth M, Little P, Arnberg F, Haggkvist J, Mulder J, Halldin C, et al. Acute neuroinflammation in a clinically relevant focal cortical ischemic stroke model in rat: longitudinal positron emission tomography and immunofluorescent tracking. Brain Struct Funct. 2016;221:1279–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Chaney AM, Johnson EM, Cropper HC, James ML. Pet imaging of neuroinflammation using [11c]dpa-713 in a mouse model of ischemic stroke. J Vis Exp. 2018.Google Scholar
  47. 47.
    Wang Y, Yue X, Kiesewetter DO, Wang Z, Lu J, Niu G, et al. [(18)f]dpa-714 pet imaging of amd3100 treatment in a mouse model of stroke. Mol Pharm. 2014;11:3463–70.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yi C, Shi X, Yu D, Luo G, Zhang B, He Q, et al. The combination of 13n-ammonia and 18f-fdg pet/ct in the identification of metabolic phenotype of primary human brain tumors. Nuklearmedizin. 2019;58:272–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Heiss WD. Pet imaging in ischemic cerebrovascular disease: current status and future directions. Neurosci Bull. 2014;30:713–32.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Aanerud J, Borghammer P, Rodell A, Jonsdottir KY, Gjedde A. Sex differences of human cortical blood flow and energy metabolism. J Cereb Blood Flow Metab. 2017;37:2433–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Sinigaglia M, Mahida B, Piekarski E, Chequer R, Mikail N, Benali K, et al. Fdg atrial uptake is associated with an increased prevalence of stroke in patients with atrial fibrillation. Eur J Nucl Med Mol Imaging. 2019.Google Scholar
  52. 52.
    Chaney A, Cropper HC, Johnson EM, Lechtenberg KJ, Peterson TC, Stevens MY, et al. (11)c-dpa-713 versus (18)f-ge-180: a preclinical comparison of translocator protein 18 kda pet tracers to visualize acute and chronic neuroinflammation in a mouse model of ischemic stroke. J Nucl Med. 2019;60:122–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Miyajima N, Ito M, Rokugawa T, Iimori H, Momosaki S, Omachi S, et al. Detection of neuroinflammation before selective neuronal loss appearance after mild focal ischemia using [(18)f]dpa-714 imaging. EJNMMI Res. 2018;8:43.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kurtys E, Casteels C, Real CC, Eisel ULM, Verkuyl JM, Broersen LM, et al. Therapeutic effects of dietary intervention on neuroinflammation and brain metabolism in a rat model of photothrombotic stroke. CNS Neurosci Ther. 2019;25:36–46.PubMedCrossRefGoogle Scholar
  55. 55.
    Colas L, Domercq M, Ramos-Cabrer P, Palma A, Gomez-Vallejo V, Padro D, et al. In vivo imaging of alpha7 nicotinic receptors as a novel method to monitor neuroinflammation after cerebral ischemia. 2018;66:1611–24.Google Scholar
  56. 56.
    Tang D, Fujinaga M, Hatori A, Zhang Y, Yamasaki T, Xie L, et al. Evaluation of the novel tspo radiotracer 2-(7-butyl-2-(4-(2-([(18)f]fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-a]pyrimidin- 3-yl)-n,n-diethylacetamide in a preclinical model of neuroinflammation. Eur J Med Chem 2018;150:1–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Bunevicius A, Yuan H, Lin W. The potential roles of 18f-fdg-pet in management of acute stroke patients. Biomed Res Int. 2013;2013:634598.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Baron JC, Rougemont D, Soussaline F, Bustany P, Crouzel C, Bousser MG, et al. Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients: a positron tomography study. J Cereb Blood Flow Metab. 1984;4:140–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Lebrun-Grandie P, Baron JC, Soussaline F, Loch'h C, Sastre J, Bousser MG. Coupling between regional blood flow and oxygen utilization in the normal human brain. A study with positron tomography and oxygen 15. Arch Neurol. 1983;40:230–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. Measurement of local cerebral glucose metabolism in man with 18f-2-fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl. 1977;64:190–1.PubMedGoogle Scholar
  61. 61.
    Liang S, Jiang X, Zhang Q, Duan S, Zhang T, Huang Q, et al. Abnormal metabolic connectivity in rats at the acute stage of ischemic stroke. Neurosci Bull. 2018;34:715–24.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Li YY, Zhang B, Yu KW, Li C, Xie HY, Bao WQ, et al. Effects of constraint-induced movement therapy on brain glucose metabolism in a rat model of cerebral ischemia: a micro pet/ct study. Int J Neurosci. 2018;128:736–45.PubMedCrossRefGoogle Scholar
  63. 63.
    Joya A, Padro D, Gomez-Vallejo V, Plaza-Garcia S, Llop J, Martin A. Pet imaging of crossed cerebellar diaschisis after long-term cerebral ischemia in rats. Contrast Media Mol Imaging. 2018;2018:2483078.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wu J, Lin B, Liu W, Huang J, Shang G, Lin Y, et al. Roles of electro-acupuncture in glucose metabolism as assessed by 18f-fdg/pet imaging and ampkalpha phosphorylation in rats with ischemic stroke. Int J Mol Med. 2017;40:875–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Han L, Li J, Chen Y, Zhang M, Qian L, Chen Y, et al. Human urinary kallidinogenase promotes angiogenesis and cerebral perfusion in experimental stroke. PLoS One. 2015;10:e0134543.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hwang H, Jeong HS, Oh PS, Na KS, Kwon J, Kim J, et al. Improving cerebral blood flow through liposomal delivery of angiogenic peptides: potential of 18f-fdg pet imaging in ischemic stroke treatment. J Nucl Med. 2015;56:1106–11.PubMedCrossRefGoogle Scholar
  67. 67.
    Arnberg F, Grafstrom J, Lundberg J, Nikkhou-Aski S, Little P, Damberg P, et al. Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited. Stroke. 2015;46:835–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Jiang XF, Zhang T, Sy C, Nie BB, Hu XY, Ding Y. Dynamic metabolic changes after permanent cerebral ischemia in rats with/without post-stroke exercise: a positron emission tomography (pet) study. Neurol Res. 2014;36:475–82.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang J, Chao F, Han F, Zhang G, Xi Q, Li J, et al. Pet demonstrates functional recovery after transplantation of induced pluripotent stem cells in a rat model of cerebral ischemic injury. J Nucl Med. 2013;54:785–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Maureen Walberer HB, Rueger MA, Neumaier B, Endepols H, Hoehn M, Fink GR, et al. Potential of early [18f]-2-fluoro-2-deoxy-d-glucose positron emission tomography for identifying hypoperfusion and predicting fate of tissue in a rat embolic stroke model. Stroke. 2012;43:193–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Stender J, Kupers R, Rodell A, Thibaut A, Chatelle C, Bruno MA, et al. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J Cereb Blood Flow Metab. 2015;35:58–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Soddu A, Gomez F, Heine L, Di Perri C, Bahri MA, Voss HU, et al. Correlation between resting state fmri total neuronal activity and pet metabolism in healthy controls and patients with disorders of consciousness. Brain Behav. 2016;6:e00424.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim D, Yoon HJ, Lee WJ, Woo SH, Kim BS. Prognostic value of (18)f-fdg brain pet as an early indicator of neurological outcomes in a rat model of post-cardiac arrest syndrome. Sci Rep. 2019;9:14798.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Putzu A, Valtorta S, Di Grigoli G, Haenggi M, Belloli S, Malgaroli A, et al. Regional differences in cerebral glucose metabolism after cardiac arrest and resuscitation in rats using [(18)f] fdg positron emission tomography and autoradiography. Neurocrit Care. 2018;28:370–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Li YQ, Liao XX, Lu JH, Liu R, Hu CL, Dai G, et al. Assessing the early changes of cerebral glucose metabolism via dynamic (18)fdg-pet/ct during cardiac arrest. Metab Brain Dis. 2015;30:969–77.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang Y, Li CS, Wu CJ, Yang J, Hang CC. Comparison of cerebral metabolism between pig ventricular fibrillation and asphyxial cardiac arrest models. Chin Med J. 2015;128:1643–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schaafsma A, de Jong BM, Bams JL, Haaxma-Reiche H, Pruim J, Zijlstra JG. Cerebral perfusion and metabolism in resuscitated patients with severe post-hypoxic encephalopathy. J Neurol Sci. 2003;210:23–30.PubMedCrossRefGoogle Scholar
  78. 78.
    Rudolf J, Ghaemi M, Ghaemi M, Haupt WF, Szelies B, Heiss WD. Cerebral glucose metabolism in acute and persistent vegetative state. J Neurosurg Anesthesiol. 1999;11:17–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Tommasino C, Grana C, Lucignani G, Torri G, Fazio F. Regional cerebral metabolism of glucose in comatose and vegetative state patients. J Neurosurg Anesthesiol. 1995;7:109–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Fatangare A, Svatos A. Applications of 2-deoxy-2-fluoro-d-glucose (fdg) in plant imaging: past, present, and future. Front Plant Sci. 2016;7:483.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Keyes JW Jr. Suv: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMedGoogle Scholar
  82. 82.
    Tosun D, Schuff N, Rabinovici GD, Ayakta N, Miller BL, Jagust W, et al. Diagnostic utility of asl-mri and fdg-pet in the behavioral variant of ftd and ad. Ann Clin Transl Neurol. 2016;3:740–51.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lehmann M, Ghosh PM, Madison C, Laforce R Jr, Corbetta-Rastelli C, Weiner MW, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain. 2013;136:844–58.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    G Z, C E, X J. Cerebral glucose metabolism with therapeutic hypothermia after cardiac arrest. The XXVIth International Symposium on Cerebral Blood Flow, Metabolism and Function & XIth International Conference on Quantification of Brain Function with PET. 2013.Google Scholar
  85. 85.
    Sobrado M, Delgado M, Fernandez-Valle E, Garcia-Garcia L, Torres M, Sanchez-Prieto J, et al. Longitudinal studies of ischemic penumbra by using 18f-fdg pet and mri techniques in permanent and transient focal cerebral ischemia in rats. NeuroImage. 2011;57:45–54.PubMedCrossRefGoogle Scholar
  86. 86.
    Backes H, Walberer M, Endepols H, Neumaier B, Graf R, Wienhard K, et al. Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)f-fdg pet: application to focal cerebral ischemia. J Nucl Med. 2011;52:1252–60.PubMedCrossRefGoogle Scholar
  87. 87.
    Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous h2(15)o. I. Theory and error analysis. J Nucl Med. 1983;24:782–9.PubMedGoogle Scholar
  88. 88.
    Fukumoto D, Hosoya T, Nishiyama S, Harada N, Iwata H, Yamamoto S, et al. Multiparametric assessment of acute and subacute ischemic neuronal damage: a small animal positron emission tomography study with rat photochemically induced thrombosis model. Synapse. 2011;65:207–14.CrossRefGoogle Scholar
  89. 89.
    Tovedal T, Lubberink M, Morell A, Estrada S, Golla SS, Myrdal G, et al. Blood flow quantitation by positron emission tomography during selective antegrade cerebral perfusion. Ann Thorac Surg. 2017;103:610–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with nmr contrast agents. Magn Reson Med. 1990;14:249–65.PubMedCrossRefGoogle Scholar
  91. 91.
    Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion mri for clinical applications: a consensus of the ismrm perfusion study group and the European consortium for asl in dementia. Magn Reson Med. 2015;73:102–16.PubMedCrossRefGoogle Scholar
  92. 92.
    Blomley MJ, Coulden R, Bufkin C, Lipton MJ, Dawson P. Contrast bolus dynamic computed tomography for the measurement of solid organ perfusion. Invest Radiol. 1993;28(Suppl 5):S72–7 discussion S78.PubMedCrossRefGoogle Scholar
  93. 93.
    Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. J Vasc Med. 2013;2013:629378.Google Scholar
  94. 94.
    Briers D, Duncan DD, Hirst E, Kirkpatrick SJ, Larsson M, Steenbergen W, et al. Laser speckle contrast imaging: theoretical and practical limitations. J Biomed Opt. 2013;18:066018.PubMedCrossRefGoogle Scholar
  95. 95.
    He J, Lu H, Young L, Deng R, Callow D. Real-time quantitative monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest with targeted temperature management. 2019;39:1161–71.Google Scholar
  96. 96.
    van den Brule JMD, van der Hoeven JG, Hoedemaekers CWE. Cerebral perfusion and cerebral autoregulation after cardiac arrest. Biomed Res Int. 2018;2018:4143636.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Mortberg E, Cumming P, Wiklund L, Wall A, Rubertsson S. A pet study of regional cerebral blood flow after experimental cardiopulmonary resuscitation. Resuscitation. 2007;75:98–104.PubMedCrossRefGoogle Scholar
  98. 98.
    Edgren E, Enblad P, Grenvik Å, Lilja A, Valind S, Wiklund L, et al. Cerebral blood flow and metabolism after cardiopulmonary resuscitation. A pathophysiologic and prognostic positron emission tomography pilot study. Resuscitation. 2003;57:161–70.PubMedCrossRefGoogle Scholar
  99. 99.
    Zaro-Weber O, Moeller-Hartmann W, Siegmund D, Kandziora A, Schuster A, Heiss WD, et al. Mri-based mismatch detection in acute ischemic stroke: optimal pwi maps and thresholds validated with pet. J Cereb Blood Flow Metab. 2017;37:3176–83.PubMedCrossRefGoogle Scholar
  100. 100.
    Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab. 2000;20:1276–93.PubMedCrossRefGoogle Scholar
  101. 101.
    Marchal G, Beaudouin V, Rioux P, de la Sayette V, Le Doze F, Viader F, et al. Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative pet-ct study with voxel-based data analysis. Stroke. 1996;27:599–606.PubMedCrossRefGoogle Scholar
  102. 102.
    Sakoh M, Rohl L, Gyldensted C, Gjedde A, Ostergaard L. Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs: comparison with [(15)o]h(2) o positron emission tomography. Stroke. 2000;31:1958–64.PubMedCrossRefGoogle Scholar
  103. 103.
    Nakane H, Ibayashi S, Fujii K, Sadoshima S, Irie K, Kitazono T, et al. Cerebral blood flow and metabolism in patients with silent brain infarction: occult misery perfusion in the cerebral cortex. J Neurol Neurosurg Psychiatry. 1998;65:317–21.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zwagerman N, Sprague S, Davis MD, Daniels B, Goel G, Ding Y. Pre-ischemic exercise preserves cerebral blood flow during reperfusion in stroke. Neurol Res. 2010;32:523–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Nanba T, Nishimoto H, Yoshioka Y, Murakami T, Sasaki M, Uwano I, et al. Apparent brain temperature imaging with multi-voxel proton magnetic resonance spectroscopy compared with cerebral blood flow and metabolism imaging on positron emission tomography in patients with unilateral chronic major cerebral artery steno-occlusive disease. Neuroradiology. 2017;59:923–35.PubMedCrossRefGoogle Scholar
  106. 106.
    Szilagyi G, Nagy Z, Balkay L, Boros I, Emri M, Lehel S, et al. Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: a pet study. J Neurol Sci. 2005;229–230:275–84.PubMedCrossRefGoogle Scholar
  107. 107.
    Rosenthal G, Hemphill JC 3rd, Manley G. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2009;37:379–80.PubMedCrossRefGoogle Scholar
  108. 108.
    Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32:1384–90.PubMedCrossRefGoogle Scholar
  109. 109.
    Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15o and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980;4:727–36.PubMedCrossRefGoogle Scholar
  110. 110.
    Lammertsma AA, Jones T. Correction for the presence of intravascular oxygen-15 in the steady-state technique for measuring regional oxygen extraction ratio in the brain: 1. Description of the method. J Cereb Blood Flow Metab. 1983;3:416–24.PubMedCrossRefGoogle Scholar
  111. 111.
    Mortberg E, Cumming P, Wiklund L, Rubertsson S. Cerebral metabolic rate of oxygen (cmro2) in pig brain determined by pet after resuscitation from cardiac arrest. Resuscitation. 2009;80:701–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Heiss WD, Graf R, Wienhard K, Lottgen J, Saito R, Fujita T, et al. Dynamic penumbra demonstrated by sequential multitracer pet after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab. 1994;14:892–902.PubMedCrossRefGoogle Scholar
  113. 113.
    Touzani O, Young AR, Derlon JM, Beaudouin V, Marchal G, Rioux P, et al. Sequential studies of severely hypometabolic tissue volumes after permanent middle cerebral artery occlusion. A positron emission tomographic investigation in anesthetized baboons. Stroke. 1995;26:2112–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Giffard C, Young AR, Kerrouche N, Derlon JM, Baron JC. Outcome of acutely ischemic brain tissue in prolonged middle cerebral artery occlusion: a serial positron emission tomography investigation in the baboon. J Cereb Blood Flow Metab. 2004;24:495–508.PubMedCrossRefGoogle Scholar
  115. 115.
    Sakoh M, Ostergaard L, Rohl L, Smith DF, Simonsen CZ, Sorensen JC, et al. Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs. J Neurosurg. 2000;93:647–57.PubMedCrossRefGoogle Scholar
  116. 116.
    Furlan M, Marchal G, Viader F, Derlon JM, Baron JC. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol. 1996;40:216–26.PubMedCrossRefGoogle Scholar
  117. 117.
    Shimosegawa E, Hatazawa J, Ibaraki M, Toyoshima H, Suzuki A. Metabolic penumbra of acute brain infarction: a correlation with infarct growth. Ann Neurol. 2005;57:495–504.PubMedCrossRefGoogle Scholar
  118. 118.
    Williamson DJ, Ejaz S, Sitnikov S, Fryer TD, Sawiak SJ, Burke P, et al. A comparison of four pet tracers for brain hypoxia mapping in a rodent model of stroke. Nucl Med Biol. 2013;40:338–44.PubMedCrossRefGoogle Scholar
  119. 119.
    Takasawa M, Beech JS, Fryer TD, Hong YT, Hughes JL, Igase K, et al. Imaging of brain hypoxia in permanent and temporary middle cerebral artery occlusion in the rat using 18f-fluoromisonidazole and positron emission tomography: a pilot study. J Cereb Blood Flow Metab. 2007;27:679–89.CrossRefGoogle Scholar
  120. 120.
    Alawneh JA, Moustafa RR, Marrapu ST, Jensen-Kondering U, Morris RS, Jones PS, et al. Diffusion and perfusion correlates of the 18f-miso pet lesion in acute stroke: pilot study. Eur J Nucl Med Mol Imaging. 2014;41:736–44.PubMedCrossRefGoogle Scholar
  121. 121.
    Salinet AS, Silva NC, Caldas J, de Azevedo DS, de-Lima-Oliveira M, Nogueira RC, et al. Impaired cerebral autoregulation and neurovascular coupling in middle cerebral artery stroke: influence of severity? J Cereb Blood Flow Metab. 2018:271678X18794835.Google Scholar
  122. 122.
    Lassen NA. The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet. 1966;2:1113–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Heckmann JG, Niedermeier W, Büchner M, Scher B. Distinctive fdg-pet/ct findings in acute neurological hospital care. Neurohospitalist. 2019;9:93–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Yasaka M, Read SJ, O'Keefe GJ, Egan GF, Pointon O, McKay WJ, et al. Positron emission tomography in ischaemic stroke: cerebral perfusion and metabolism after stroke onset. J Clin Neurosci. 1998;5:413–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Kudomi N, Watabe H, Hayashi T, Iida H. Separation of input function for rapid measurement of quantitative cmro2 and cbf in a single pet scan with a dual tracer administration method. Phys Med Biol. 2007;52:1893–908.PubMedCrossRefGoogle Scholar
  126. 126.
    Kudomi N, Hirano Y, Koshino K, Hayashi T, Watabe H, Fukushima K, et al. Rapid quantitative cbf and cmro(2) measurements from a single pet scan with sequential administration of dual (15)o-labeled tracers. J Cereb Blood Flow Metab. 2013;33:440–8.Google Scholar
  127. 127.
    Bremmer JP, van Berckel BN, Persoon S, Kappelle LJ, Lammertsma AA, Kloet R, et al. Day-to-day test-retest variability of cbf, cmro2, and oef measurements using dynamic 15o pet studies. Mol Imaging Biol. 2011;13:759–68.PubMedCrossRefGoogle Scholar
  128. 128.
    Yang X, Sun J, Kim TJ, Kim YJ, Ko SB, Kim CK, et al. Pretreatment with low-dose fimasartan ameliorates nlrp3 inflammasome-mediated neuroinflammation and brain injury after intracerebral hemorrhage. Exp Neurol. 2018;310:22–32.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Scarf AM, Kassiou M. The translocator protein. J Nucl Med. 2011;52:677–80.PubMedCrossRefGoogle Scholar
  130. 130.
    Stefaniak J, O'Brien J. Imaging of neuroinflammation in dementia: a review. J Neurol Neurosurg Psychiatry. 2016;87:21–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Gerhard A. Tspo imaging in parkinsonian disorders. Clin Transl Imaging. 2016;4:183–90.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Airas L, Rissanen E, Rinne JO. Imaging neuroinflammation in multiple sclerosis using tspo-pet. Clin Transl Imaging. 2015;3:461–73.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Cerami C, Perani D. Imaging neuroinflammation in ischemic stroke and in the atherosclerotic vascular disease. Curr Vasc Pharmacol. 2015;13:218–22.PubMedCrossRefGoogle Scholar
  134. 134.
    Fan J, Lindemann P, Feuilloley MG, Papadopoulos V. Structural and functional evolution of the translocator protein (18 kda). Curr Mol Med. 2012;12:369–86.PubMedGoogle Scholar
  135. 135.
    Hosoya T, Fukumoto D, Kakiuchi T, Nishiyama S, Yamamoto S, Ohba H, et al. In vivo tspo and cannabinoid receptor type 2 availability early in post-stroke neuroinflammation in rats: a positron emission tomography study. J Neuroinflammation. 2017;14:69.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Huang J, Li Y, Tang Y, Tang G, Yang GY, Wang Y. Cxcr4 antagonist amd3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke. 2013;44:190–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Choudhary RC, Jia X. Hypothalamic or extrahypothalamic modulation and targeted temperature management after brain injury. Ther Hypothermia Temp Manag. 2017;7:125–33.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Jia X, Koenig MA, Nickl R, Zhen G, Thakor NV, Geocadin RG. Early electrophysiologic markers predict functional outcome associated with temperature manipulation after cardiac arrest in rats. Crit Care Med. 2008;36:1909–16.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Ouchi T, Ochiai R, Takeda J, Tsukada H, Kakiuchi T. Combined effects of propofol and mild hypothermia on cerebral metabolism and blood flow in rhesus monkey: a positron emission tomography study. J Anesth. 2006;20:208–14.PubMedCrossRefGoogle Scholar
  140. 140.
    Sakoh M, Gjedde A. Neuroprotection in hypothermia linked to redistribution of oxygen in brain. Am J Physiol Heart Circ Physiol. 2003;285:H17–25.PubMedCrossRefGoogle Scholar
  141. 141.
    Walter B, Bauer R, Kuhnen G, Fritz H, Zwiener U. Coupling of cerebral blood flow and oxygen metabolism in infant pigs during selective brain hypothermia. J Cereb Blood Flow Metab. 2000;20:1215–24.PubMedCrossRefGoogle Scholar
  142. 142.
    Miyano H, Inagaki M, Hashimoto N, Shishido T, Kawada T, Miyake Y, et al. Regional cerebral blood flow during rewarming of cardiopulmonary bypass correlates with posthypothermic regional glucose use. J Thorac Cardiovasc Surg. 1998;116:503–10.PubMedCrossRefGoogle Scholar
  143. 143.
    Kirkegaard H, Soreide E, de Haas I, Pettila V, Taccone FS, Arus U, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial. Jama. 2017;318:341–50.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Nakamura T, Kuroda Y, Torigoe N, Abe Y, Yamashita S, Kawakita K, et al. Cerebral metabolism monitoring during hypothermia following resuscitation from cardiopulmonary arrest. Acta Neurochir Suppl. 2008;102:203–6.Google Scholar
  145. 145.
    Luo M, Li Q, Dong W, Zhai X, Kang L. Evaluation of mild hypothermia therapy for neonatal hypoxic-ischaemic encephalopathy on brain energy metabolism using (18)f-fluorodeoxyglucose positron emission computed tomography. Exp Ther Med. 2014;8:1219–24.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Alshweki A, Pérez-Muñuzuri A, López-Suárez O, Baña A, Couce ML. Relevance of urinary s100b protein levels as a short-term prognostic biomarker in asphyxiated infants treated with hypothermia. Medicine (Baltimore). 2017;96:e8453.CrossRefGoogle Scholar
  147. 147.
    Forgacs PB, Fridman EA, Goldfine AM, Schiff ND. Isolation syndrome after cardiac arrest and therapeutic hypothermia. Front Neurosci. 2016;10:259.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Girotra S, van Diepen S, Nallamothu BK, Carrel M, Vellano K, Anderson ML, et al. Regional variation in out-of-hospital cardiac arrest survival in the United States. Circulation. 2016;133:2159–68.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Keijzer HM, Hoedemaekers CWE, Meijer FJA, Tonino BAR, Klijn CJM, Hofmeijer J. Brain imaging in comatose survivors of cardiac arrest: pathophysiological correlates and prognostic properties. Resuscitation. 2018;133:124–36.PubMedCrossRefGoogle Scholar
  150. 150.
    Heiss WD. The ischemic penumbra: correlates in imaging and implications for treatment of ischemic stroke. The johann jacob wepfer award 2011. Cerebrovasc Dis. 2011;32:307–20.PubMedCrossRefGoogle Scholar
  151. 151.
    Salmon E, Bernard Ir C, Hustinx R. Pitfalls and limitations of pet/ct in brain imaging. Semin Nucl Med. 2015;45:541–51.PubMedCrossRefGoogle Scholar
  152. 152.
    Yang ZL, Zhang LJ. Pet/mri of central nervous system: current status and future perspective. Eur Radiol. 2016;26:3534–41.PubMedCrossRefGoogle Scholar
  153. 153.
    Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K. Pet/ct in oncology: current status and perspectives. Curr Radiol Rep. 2013;1:177–90.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Li S, Jiang D. Aptamer-conjugated framework nucleic acids for the repair of cerebral ischemia-reperfusion injury. 2019;19:7334–41.Google Scholar
  155. 155.
    Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18f-fdg pet as an indicator of therapeutic response in patients in national cancer institute trials. J Nucl Med. 2006;47:1059–66.PubMedGoogle Scholar
  156. 156.
    Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Nagren K, et al. Eanm procedure guidelines for pet brain imaging using [18f] fdg, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.PubMedCrossRefGoogle Scholar
  157. 157.
    Nensa F, Beiderwellen K, Heusch P, Wetter A. Clinical applications of pet/mri: current status and future perspectives. Diagn Interv Radiol. 2014;20:438–47.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Bonaventura J, Eldridge MAG. High-potency ligands for dreadd imaging and activation in rodents and monkeys. 2019;10:4627.Google Scholar
  159. 159.
    Abdel Razek AAK, Talaat M, El-Serougy L, Gaballa G, Abdelsalam M. Clinical applications of arterial spin labeling in brain tumors. J Comput Assist Tomogr. 2019;43:525–32.PubMedGoogle Scholar
  160. 160.
    Puig O, Henriksen OM, Vestergaard MB, Hansen AE, Andersen FL, Ladefoged CN, et al. Comparison of simultaneous arterial spin labeling mri and (15)o-h2o pet measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab. 2019:271678x19874643.Google Scholar
  161. 161.
    Notni J, Hermann P, Dregely I, Wester HJ. Convenient synthesis of (68)ga-labeled gadolinium (iii) complexes: towards bimodal responsive probes for functional imaging with pet/mri. Chemistry. 2013;19:12602–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, et al. Bisphosphonate-anchored pegylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (t1 mri-spect) imaging. ACS Nano. 2013;7:500–12.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, et al. Fluorine-18-labeled gd3+/yb3+/er3+ co-doped nayf4 nanophosphors for multimodality pet/mr/ucl imaging. Biomaterials. 2011;32:1148–56.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Fan Q, Cheng K, Hu X, Ma X, Zhang R, Yang M, et al. Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. J Am Chem Soc. 2014;136:15185–94.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, et al. Pet/mri: where might it replace pet/ct? J Magn Reson Imaging. 2017;46:1247–62.PubMedCrossRefGoogle Scholar
  166. 166.
    Lu FM, Yuan Z. Pet/spect molecular imaging in clinical neuroscience: recent advances in the investigation of cns diseases. Quant Imaging Med Surg. 2015;5:433–47.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
  2. 2.Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreUSA
  3. 3.Department of OrthopedicsUniversity of Maryland School of MedicineBaltimoreUSA
  4. 4.Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreUSA
  5. 5.Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations