Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

FasL-PDPK1 Pathway Promotes the Cytotoxicity of CD8+ T Cells During Ischemic Stroke

Abstract

CD8+ T cells are recognized as key players in exacerbation of ischemic stroke; however, the underlying mechanism in modulating the function of CD8+ T cells has not been completely elucidated. Here, we uncovered that FasL enhanced the cytotoxicity of CD8+ T cells to neurons after ischemic stroke. Inactivation of FasL specific on CD8+ T cells protected against brain damage and neuron loss. Proteomic analysis identified that PDPK1 functioned downstream of FasL signaling and inhibition of PDPK1 effectively reduced cytotoxicity of CD8+ T cells and improved ischemic neurological deficits. Taken together, these results highlight an intrinsic FasL-PDPK1 pathway regulating the cytotoxicity of CD8+ T cells in ischemic stroke.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Leventhal JS, Schröppel B. Toll-like receptors in transplantation: sensing and reacting to injury. Kidney Int. 2012;81(9):826–32.

  2. 2.

    Llovera G, Benakis C, Enzmann G, Cai R, Arzberger T, Ghasemigharagoz A, et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 2017;134(6):851–68.

  3. 3.

    Zhao H, Wan L, Chen Y, Zhang H, Xu Y, Qiu S. FasL incapacitation alleviates CD4(+) T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. J Neuroimmunol. 2018;318:36–44.

  4. 4.

    Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J. 2009;23(11):3659–73.

  5. 5.

    Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, et al. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun. 2018;73:562–70.

  6. 6.

    Del Val M, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH. Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell. 1991;66(6):1145–53.

  7. 7.

    Zhu J, Petit PF, Van den Eynde BJ. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 2018.

  8. 8.

    Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30(2):180–92.

  9. 9.

    Zheng H, Li W, Wang Y, Liu Z, Cai Y, Xie T, et al. Glycogen synthase kinase-3 beta regulates Snail and beta-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer. Eur J Cancer. 2013;49(12):2734–46.

  10. 10.

    Choi C, Xu X, Oh JW, Lee SJ, Gillespie GY, Park H, et al. Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res. 2001;61(7):3084–91.

  11. 11.

    Piao X, Miura R, Miyake S, Komazawa-Sakon S, Koike M, Shindo R, et al. Blockade of TNF receptor superfamily 1 (TNFR1)-dependent and TNFR1-independent cell death is crucial for normal epidermal differentiation. J Allergy Clin Immunol. 2019;143(1):213–28.e10.

  12. 12.

    Rex J, Lutz A, Faletti LE, Albrecht U, Thomas M, Bode JG, et al. IL-1beta and TNFalpha differentially influence NF-kappaB activity and FasL-induced apoptosis in primary murine hepatocytes during LPS-induced inflammation. Front Physiol. 2019;10:117.

  13. 13.

    Wang L, Liu S, Zhao Y, Liu D, Liu Y, Chen C, et al. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 2015;22(10):1654–64.

  14. 14.

    Trambas CM, Griffiths GM. Delivering the kiss of death. Nat Immunol. 2003;4(5):399–403.

  15. 15.

    Akane K, Kojima S, Mak TW, Shiku H, Suzuki H. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc Natl Acad Sci U S A. 2016;113(9):2460–5.

  16. 16.

    Hong LK, Chen Y, Smith CC, Montgomery SA, Vincent BG, Dotti G, et al. CD30-redirected chimeric antigen receptor T cells target CD30(+) and CD30(-) embryonal carcinoma via antigen-dependent and Fas/FasL interactions. Cancer Immunol Res. 2018;6(10):1274–87.

  17. 17.

    Meng H, Zhao H, Cao X, Hao J, Zhang H, Liu Y, et al. Double-negative T cells remarkably promote neuroinflammation after ischemic stroke. Proc Natl Acad Sci U S A. 2019;116(12):5558–63.

  18. 18.

    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261–9.

  19. 19.

    Di Blasio L, Gagliardi PA, Puliafito A, Primo L. Serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDK1) as a key regulator of cell migration and cancer dissemination. Cancers (Basel). 2017;9(3).

  20. 20.

    Gagliardi PA, di Blasio L, Primo L. PDK1: a signaling hub for cell migration and tumor invasion. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2015;1856(2):178–88.

  21. 21.

    Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, et al. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell. 2018;71(2):201–15.e7.

  22. 22.

    Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med. 2012;209(13):2441–53.

  23. 23.

    Pozzesi N, Fierabracci A, Liberati AM, Martelli MP, Ayroldi E, Riccardi C, et al. Role of caspase-8 in thymus function. Cell Death Differ. 2014;21(2):226–33.

  24. 24.

    Chen ZB, Huang DQ, Niu FN, Zhang X, Li EG, Xu Y. Human urinary kallidinogenase suppresses cerebral inflammation in experimental stroke and downregulates nuclear factor-kappaB. J Cereb Blood Flow Metab. 2010;30(7):1356–65.

  25. 25.

    Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, et al. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med. 2008;205(7):1583–91.

  26. 26.

    Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.

  27. 27.

    Zhang L, Schallert T, Zhang ZG, Jiang Q, Arniego P, Li Q, et al. A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods. 2002;117(2):207–14.

  28. 28.

    Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, et al. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res. 2011;1402:122–31.

  29. 29.

    Alamri FF, Shoyaib AA, Biggers A, Jayaraman S, Guindon J, Karamyan VT. Applicability of the grip strength and automated von Frey tactile sensitivity tests in the mouse photothrombotic model of stroke. Behav Brain Res. 2018;336:250–5.

  30. 30.

    Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17(6):1304–8.

  31. 31.

    Mombaerts P, Lacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.

  32. 32.

    Xu Y, Zhang B, Hua Z, Johns RA, Bredt DS, Tao YX. Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons. Exp Neurol. 2004;189(1):16–24.

  33. 33.

    Tang X, Liu K, Hamblin MH, Xu Y, Yin KJ. Genetic Deletion of kruppel-like factor 11 aggravates ischemic brain injury. Mol Neurobiol. 2018;55(4):2911–21.

  34. 34.

    Maegawa S, Chinen Y, Shimura Y, Tanba K, Takimoto T, Mizuno Y, et al. Phosphoinositide-dependent protein kinase 1 is a potential novel therapeutic target in mantle cell lymphoma. Exp Hematol. 2018;59:72–81 e2.

  35. 35.

    Tracey KJ. Neurons are the inflammatory problem. Cell. 2018;173(5):1066–8.

  36. 36.

    Xie L, Li W, Hersh J, Liu R, Yang SH. Experimental ischemic stroke induces long-term T cell activation in the brain. J Cereb Blood Flow Metab. 2018:271678X18792372.

  37. 37.

    Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(Pt 3):704–20.

  38. 38.

    Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113(17):2105–12.

  39. 39.

    Banerjee A, Wang J, Bodhankar S, Vandenbark AA, Murphy SJ, Offner H. Phenotypic changes in immune cell subsets reflect increased infarct volume in male vs. female mice. Transl Stroke Res. 2013;4(5):554–63.

  40. 40.

    Morales-Kastresana A, Catalan E, Hervas-Stubbs S, Palazon A, Azpilikueta A, Bolanos E, et al. Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb. J Immunother Cancer. 2013;1:3.

  41. 41.

    Samidurai M, Ramasamy VS, Jo J. Beta-amyloid inhibits hippocampal LTP through TNFR/IKK/NF-kappaB pathway. Neurol Res. 2018;40(4):268–76.

  42. 42.

    Tao J, Zhang J, Ling Y, McCall CE, Liu TF. Mitochondrial sirtuin 4 resolves immune tolerance in monocytes by rebalancing glycolysis and glucose oxidation homeostasis. Front Immunol. 2018;9:419.

  43. 43.

    Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE, et al. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci U S A. 2010;107(6):2598–603.

  44. 44.

    Li D, Mullinax JE, Aiken T, Xin H, Wiegand G, Anderson A, et al. Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells. BMC Cancer. 2018;18(1):772.

  45. 45.

    Kang JA, Choi H, Yang T, Cho SK, Park ZY, Park SG. PKCtheta-mediated PDK1 phosphorylation enhances T cell activation by increasing PDK1 stability. Mol Cell. 2017;40(1):37–44.

  46. 46.

    Maemets-Allas K, Viil J, Jaks V. A novel inhibitor of AKT1-PDPK1 interaction efficiently suppresses the activity of AKT pathway and restricts tumor growth in vivo. Mol Cancer Ther. 2015;14(11):2486–96.

  47. 47.

    Rogel A, Willoughby JE, Buchan SL, Leonard HJ, Thirdborough SM, Al-Shamkhani A. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance. Proc Natl Acad Sci U S A. 2017;114(7):E1178–87.

  48. 48.

    Moon G, Kim J, Min Y, Wi SM, Shim JH, Chun E, et al. Phosphoinositide-dependent kinase-1 inhibits TRAF6 ubiquitination by interrupting the formation of TAK1-TAB2 complex in TLR4 signaling. Cell Signal. 2015;27(12):2524–33.

  49. 49.

    Yu W, Pan Z, Zhu Y, An F, Lu Y. Fumigaclavine C exhibits anti-inflammatory effects by suppressing high mobility group box protein 1 relocation and release. Eur J Pharmacol. 2017;812:234–42.

Download references

Acknowledgments

We thank Translational Medicine Core facilities in Medical School of Nanjing University for proteomic analysis. We thank Yan Zhang, Yue Gu, and Xinyu Bao for their technical support.

Funding

This research was supported by the National Natural Science Foundation of China (81230026, 81630028, 81701235, 81701168), the Science and Technology Department of Jiangsu Province (BE2016610), and the Jiangsu Province Key Medical Discipline (ZDXKA2016020).

Author information

Yun Xu designed and coordinated the study, analyzed the data, and revised the paper. Lizhen Fan and Cunjin Zhang performed the experiments, wrote the manuscript, and revised the figures. Liwen Zhu, Jian Chen, Xiang Cao, Pinyi Liu, Zhi Zhang, and Hailan Meng helped with the experiments. Lizhen Fan and Cun-Jin Zhang contributed equally to this work.

Correspondence to Yun Xu.

Ethics declarations

Conflict of Interest

All authors read and approved the final manuscript. The authors declare no conflict of interest.

Ethical Approval

This study was carried out in accordance with the recommendations of institutional guidelines and approved by the Animal Care Committee in Nanjing University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1258 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zhang, C., Zhu, L. et al. FasL-PDPK1 Pathway Promotes the Cytotoxicity of CD8+ T Cells During Ischemic Stroke. Transl. Stroke Res. (2020). https://doi.org/10.1007/s12975-019-00749-0

Download citation

Keywords

  • stroke
  • FasL
  • CD8+ T cells
  • neurons
  • PDPK1
  • cytotoxicity