Advertisement

Translational Stroke Research

, Volume 11, Issue 1, pp 4–15 | Cite as

Vascular Arginase Is a Relevant Target to Improve Cerebrovascular Endothelial Dysfunction in Rheumatoid Arthritis: Evidence from the Model of Adjuvant-Induced Arthritis

  • Romain Bordy
  • Aurore Quirié
  • Christine Marie
  • Daniel Wendling
  • Perle Totoson
  • Céline DemougeotEmail author
Original Article
  • 89 Downloads

Abstract

Emerging data revealed that rheumatoid arthritis (RA) is associated with higher risk of cerebrovascular diseases. Whereas cerebral endothelial dysfunction is acknowledged as a critical aspect of cerebrovascular diseases, its presence in RA and the mechanisms involved are currently unknown. By using the model of rat adjuvant-induced arthritis (AIA), the present study investigated cerebrovascular reactivity in pressurized middle cerebral arteries (MCA) on day 33 post-immunization. The results revealed that arthritis induced a dramatic decrease in the vasodilatory response to acetylcholine (ACh), ADP, and bradykinin (n = 7–9 arteries, p < 0.0001). By using nor-NOHA, L-NAME, BH4, and Tempol, the results showed that the reduced response to ACh relied on arginase overactivation (n = 8), low NOS activity (n = 8), BH4 deficiency (n = 9), and excessive superoxide production (n = 9). Immunohistological analysis revealed an endothelial upregulation of arginase 2 (p < 0.05, n = 5–6) and NADPH oxidase (p < 0.05, n = 5–7) while eNOS expression was unchanged in AIA (n = 6). To assess whether arginase inhibition may be a relevant therapeutic, AIA rats were treated with an arginase inhibitor (nor-NOHA, 40 mg/kg/day, i.p., n = 20 rats) daily from day 10 to day 33 post-immunization. The treatment alleviated the impaired response of MCA to endothelium-dependent agonists, through an increase in NOS signaling and a suppression of BH4 deficiency and superoxide overproduction. By contrast, it did not change the course of arthritis. In conclusion, arthritis induced a cerebrovascular endothelial dysfunction involving an imbalance in the arginase/NOS pathway. Arginase inhibition appears as a promising therapy beyond anti-rheumatic drugs for reducing the risk of cerebrovascular diseases in RA.

Keywords

Arthritis Middle cerebral artery Endothelial dysfunction Arginase 

Notes

Acknowledgements

The authors thank M. Nappey-Tournier for her technical assistance for tissue collection.

Authors’ Contributions

RB, DW, PT, and CD planned and conceived the study. RB, AQ, and PT performed experiments. RB, CM, PT, and CD interpreted the data. All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published.

Compliance with Ethical Standards

The experimental procedures were approved by the local committee for ethics in animal experimentation no. 2015-001-CD-5PR of Franche-Comté University (Besançon, France) and complied with the “Animal Research: Reporting In Vivo Experiments” ARRIVE guidelines.

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12975_2019_699_MOESM1_ESM.doc (340 kb)
ESM 1 (DOC 340 kb)

References

  1. 1.
    Aviña-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, Lacaille D. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 2008;59:1690–7.  https://doi.org/10.1002/art.24092.CrossRefPubMedGoogle Scholar
  2. 2.
    England BR, Thiele GM, Anderson DR, Mikuls TR. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ. 2018;361:k1036.  https://doi.org/10.1136/bmj.k1036.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Prati C, Demougeot C, Guillot X, Godfrin-Valnet M, Wendling D. Endothelial dysfunction in joint disease. Joint Bone Spine. 2014;81:386–91.  https://doi.org/10.1016/j.jbspin.2014.01.014.CrossRefPubMedGoogle Scholar
  4. 4.
    Arida A, Protogerou AD, Kitas GD, Sfikakis PP. Systemic inflammatory response and atherosclerosis: the paradigm of chronic inflammatory rheumatic diseases. Int J Mol Sci. 2018;19:1890.  https://doi.org/10.3390/ijms19071890.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bordy R, Totoson P, Prati C, Marie C, Wendling D, Demougeot C. Microvascular endothelial dysfunction in rheumatoid arthritis. Nat Rev Rheumatol. 2018;14:404–20.  https://doi.org/10.1038/s41584-018-0022-8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wiseman SJ, Ralston SH, Wardlaw JM. Cerebrovascular disease in rheumatic diseases: a systematic review and meta-analysis. Stroke. 2016;47:943–50.  https://doi.org/10.1161/STROKEAHA.115.012052.CrossRefPubMedGoogle Scholar
  7. 7.
    Atzeni F, Pipitone N, Iaccarino L, Masala IF, Weiss R, Alciati A, et al. Rheumatic diseases and autoimmune vascular dementia. Autoimmun Rev. 2017;16:1265–9.  https://doi.org/10.1016/j.autrev.2017.10.011.CrossRefPubMedGoogle Scholar
  8. 8.
    Wolfe F. Fatigue assessments in rheumatoid arthritis: comparative performance of visual analog scales and longer fatigue questionnaires in 7760 patients. J Rheumatol. 2004;31:1896–902.PubMedGoogle Scholar
  9. 9.
    Meade T, Manolios N, Cumming SR, Conaghan PG, Katz P. Cognitive impairment in rheumatoid arthritis: a systematic review. Arthritis Care Res. 2018;70:39–52.  https://doi.org/10.1002/acr.23243.CrossRefGoogle Scholar
  10. 10.
    Shin SY, Katz P, Wallhagen M, Julian L. Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care Res. 2012;64:1144–50.  https://doi.org/10.1002/acr.21683.CrossRefGoogle Scholar
  11. 11.
    Hu X, De Silva TM, Chen J, Faraci FM. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res. 2017;120:449–71.  https://doi.org/10.1161/CIRCRESAHA.116.308427.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Elhusseiny A, Hamel E. Muscarinic-but not nicotinic-acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab. 2000;20:298–305.  https://doi.org/10.1097/00004647-200002000-00011.CrossRefPubMedGoogle Scholar
  13. 13.
    Baumbach GL, Sigmund CD, Faraci FM. Structure of cerebral arterioles in mice deficient in expression of the gene for endothelial nitric oxide synthase. Circ Res. 2004;95:822–9.  https://doi.org/10.1161/01.RES.0000146279.11923.14.CrossRefPubMedGoogle Scholar
  14. 14.
    Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev. 1998;78:53–97.  https://doi.org/10.1152/physrev.1998.78.1.53.CrossRefPubMedGoogle Scholar
  15. 15.
    Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61:62–97.  https://doi.org/10.1124/pr.108.000547.CrossRefPubMedGoogle Scholar
  16. 16.
    Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase: a multifaceted enzyme important in health and disease. Physiol Rev. 2018;98:641–65.  https://doi.org/10.1152/physrev.00037.2016.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Totoson P, Maguin-Gaté K, Prati C, Wendling D, Demougeot C. Mechanisms of endothelial dysfunction in rheumatoid arthritis: lessons from animal studies. Arthritis Res Ther. 2014;16:202.  https://doi.org/10.1186/ar4450.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Prati C, Berthelot A, Wendling D, Demougeot C. Endothelial dysfunction in rat adjuvant-induced arthritis: up-regulation of the vascular arginase pathway. Arthritis Rheum. 2011;63:2309–17.  https://doi.org/10.1002/art.30391.CrossRefPubMedGoogle Scholar
  19. 19.
    Prati C, Berthelot A, Kantelip B, Wendling D, Demougeot C. Treatment with the arginase inhibitor Nw-hydroxy-nor-L-arginine restores endothelial function in rat adjuvant-induced arthritis. Arthritis Res Ther. 2012;14:R130.  https://doi.org/10.1186/ar3860.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Oliver SJ, Brahn E. Combination therapy in rheumatoid arthritis: the animal model perspective. J Rheumatol Suppl. 1996;44:56–60.PubMedGoogle Scholar
  21. 21.
    Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature. 2003;426:454–60.  https://doi.org/10.1038/nature02119.CrossRefPubMedGoogle Scholar
  22. 22.
    Totoson P, Maguin-Gaté K, Nappey M, Prati C, Wendling D, Demougeot C. Microvascular abnormalities in adjuvant-induced arthritis: relationship to macrovascular endothelial function and markers of endothelial activation. Arthritis Rheum. 2015;67:1203–13.  https://doi.org/10.1002/art.39065.CrossRefGoogle Scholar
  23. 23.
    Ackerman NR, Rooks WH, Shott L, Genant H, Maloney P, West E. Effects of naproxen on connective tissue changes in the adjuvant arthritic rat. Arthritis Rheum. 1979;22:1365–74.  https://doi.org/10.1002/art.1780221208.CrossRefPubMedGoogle Scholar
  24. 24.
    Verhoeven F, Totoson P, Marie C, Prigent-Tessier A, Wendling D, Tournier-Nappey M, et al. Diclofenac but not celecoxib improves endothelial function in rheumatoid arthritis: a study in adjuvant-induced arthritis. Atherosclerosis. 2017;266:136–44.  https://doi.org/10.1016/j.atherosclerosis.2017.09.033.CrossRefPubMedGoogle Scholar
  25. 25.
    Brooks SD, DeVallance E, d’Audiffret AC, et al. Metabolic syndrome impairs reactivity and wall mechanics of cerebral resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol. 2015;309:H1846–59.  https://doi.org/10.1152/ajpheart.00691.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Anwar MA, Eid AH. Determination of vascular reactivity of middle cerebral arteries from stroke and spinal cord injury animal models using pressure myography. Methods Mol Biol Clifton NJ. 2016;1462:611–24.  https://doi.org/10.1007/978-1-4939-3816-2_33.CrossRefGoogle Scholar
  27. 27.
    Haruna Y, Morita Y, Komai N, Yada T, Sakuta T, Tomita N, et al. Endothelial dysfunction in rat adjuvant-induced arthritis: vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum. 2006;54:1847–55.  https://doi.org/10.1002/art.21891.CrossRefPubMedGoogle Scholar
  28. 28.
    Haruna Y, Morita Y, Yada T, Satoh M, Fox DA, Kashihara N. Fluvastatin reverses endothelial dysfunction and increased vascular oxidative stress in rat adjuvant-induced arthritis. Arthritis Rheum. 2007;56:1827–35.  https://doi.org/10.1002/art.22632.CrossRefPubMedGoogle Scholar
  29. 29.
    Tenu JP, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher JL. Effects of the new arginase inhibitor N(omega)-hydroxy-nor-L-arginine on NO synthase activity in murine macrophages. Nitric Oxide Biol Chem. 1999;3:427–38.  https://doi.org/10.1006/niox.1999.0255.CrossRefGoogle Scholar
  30. 30.
    Topal G, Topal J-LG, Brunet A, et al. Mitochondrial arginase II modulates nitric-oxide synthesis through nonfreely exchangeable L-arginine pools in human endothelial cells. J Pharmacol Exp Ther. 2006;318:1368–74.  https://doi.org/10.1124/jpet.106.103747.CrossRefPubMedGoogle Scholar
  31. 31.
    Bagnost T, Berthelot A, Bouhaddi M, Laurant P, André C, Guillaume Y, et al. Treatment with the arginase inhibitor N(omega)-hydroxy-nor-L-arginine improves vascular function and lowers blood pressure in adult spontaneously hypertensive rat. J Hypertens. 2008;26:1110–8.  https://doi.org/10.1097/HJH.0b013e3282fcc357.CrossRefPubMedGoogle Scholar
  32. 32.
    Oláh C, Kardos Z, Sepsi M, Sas A, Kostyál L, Bhattoa HP, et al. Assessment of intracranial vessels in association with carotid atherosclerosis and brain vascular lesions in rheumatoid arthritis. Arthritis Res Ther. 2017;19:213.  https://doi.org/10.1186/s13075-017-1422-x.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chandrasekharan UM, Wang Z, Wu Y, Wilson Tang WH, Hazen SL, Wang S, et al. Elevated levels of plasma symmetric dimethylarginine and increased arginase activity as potential indicators of cardiovascular comorbidity in rheumatoid arthritis. Arthritis Res Ther. 2018;20:123.  https://doi.org/10.1186/s13075-018-1616-x.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des. 2014;20:3548–53.  https://doi.org/10.2174/13816128113196660746.CrossRefPubMedGoogle Scholar
  35. 35.
    Daghigh F, Fukuto JM, Ash DE. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun. 1994;202:174–80.  https://doi.org/10.1006/bbrc.1994.1909.CrossRefPubMedGoogle Scholar
  36. 36.
    Cox JD, Cama E, Colleluori DM, Pethe S, Boucher JL, Mansuy D, et al. Mechanistic and metabolic inferences from the binding of substrate analogues and products to arginase. Biochemistry. 2001;40:2689–701.  https://doi.org/10.1021/bi002318+.CrossRefPubMedGoogle Scholar
  37. 37.
    Quirié A, Demougeot C, Bertrand N, Mossiat C, Garnier P, Marie C, et al. Effect of stroke on arginase expression and localization in the rat brain. Eur J Neurosci. 2013;37:1193–202.  https://doi.org/10.1111/ejn.12111.CrossRefPubMedGoogle Scholar
  38. 38.
    Akazawa Y, Kubo M, Zhang R, Matsumoto K, Yan F, Setiawan H, et al. Inhibition of arginase ameliorates experimental ulcerative colitis in mice. Free Radic Res. 2013;47:137–45.  https://doi.org/10.3109/10715762.2012.756980.CrossRefPubMedGoogle Scholar
  39. 39.
    Tam H-W, Chen C-M, Leong P-Y, Chen CH, Li YC, Wang YH, et al. Methotrexate might reduce ischemic stroke in patients with rheumatoid arthritis: a population-based retrospective cohort study. Int J Rheum Dis. 2018;21:1591–9.  https://doi.org/10.1111/1756-185X.13267.CrossRefPubMedGoogle Scholar
  40. 40.
    Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, Fleming P, et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:480–9.  https://doi.org/10.1136/annrheumdis-2014-206624.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Matcham F, Galloway J, Hotopf M, Roberts E, Scott IC, Steer S, et al. The impact of targeted rheumatoid arthritis pharmacologic treatment on mental health: a systematic review and network meta-analysis. Arthritis Rheum. 2018;70:1377–91.  https://doi.org/10.1002/art.40565.CrossRefGoogle Scholar
  42. 42.
    Chandra S, Romero MJ, Shatanawi A, Alkilany AM, Caldwell RB, Caldwell RW. Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway. Br J Pharmacol. 2012;165:506–19.  https://doi.org/10.1111/j.1476-5381.2011.01584.x.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hashimoto H, Kawamura M, Yukami T, Ishihara M, Bamba Y, Kaneshiro S, et al. Etiology of acute ischaemic cerebrovascular disease associated with rheumatoid arthritis: changes with progression of anti-inflammatory therapy. Eur J Neurol. 2018;12:1462–9.  https://doi.org/10.1111/ene.13751.CrossRefGoogle Scholar
  44. 44.
    Barakat W, Fahmy A, Askar M, El-Kannishy S. Effectiveness of arginase inhibitors against experimentally induced stroke. Naunyn Schmiedeberg's Arch Pharmacol. 2018;391:603–12.  https://doi.org/10.1007/s00210-018-1489-1.CrossRefGoogle Scholar
  45. 45.
    Pedard M, Demougeot C, Prati C, Marie C. Brain-derived neurotrophic factor in adjuvant-induced arthritis in rats. Relationship with inflammation and endothelial dysfunction. Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;82:249–54.  https://doi.org/10.1016/j.pnpbp.2017.11.006.CrossRefGoogle Scholar
  46. 46.
    Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223–50.  https://doi.org/10.1007/978-3-642-45106-5_9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Romain Bordy
    • 1
  • Aurore Quirié
    • 2
  • Christine Marie
    • 2
  • Daniel Wendling
    • 3
    • 4
  • Perle Totoson
    • 1
  • Céline Demougeot
    • 1
    Email author
  1. 1.PEPITE EA 4267, FHU INCREASEUniv. Bourgogne Franche-ComtéBesançonFrance
  2. 2.INSERM UMR1093-CAPS, UFR Sciences de SantéUniv. Bourgogne Franche-ComtéDijonFrance
  3. 3.EA 4266 « Agents Pathogènes et Inflammation », FHU INCREASEUniv. Bourgogne Franche-ComtéBesançonFrance
  4. 4.Service de RhumatologieCHU MinjozBesanconFrance

Personalised recommendations