Advertisement

Translational Stroke Research

, Volume 9, Issue 5, pp 437–451 | Cite as

Photothrombotic Stroke as a Model of Ischemic Stroke

  • Anatoly B. UzdenskyEmail author
Review

Abstract

The search of effective anti-stroke neuroprotectors requires various stroke models adequate for different aspects of the ischemic processes. The photothrombotic stroke model is particularly suitable for the study of cellular and molecular mechanisms underlying neurodegeneration, neuroprotection, and neuroregeneration. It is a model of occlusion of small cerebral vessels, which provides detailed study of molecular mechanisms of ischemic cell death and useful for search of potential anti-stroke agents. Its advantages include well-defined location and size of ischemic lesion that are determined by the aiming of the laser beam at the predetermined brain region; easy impact dosing by changing light intensity and duration; low invasiveness and minimal surgical intervention without craniotomy and mechanical manipulations with blood vessel, which carry the risk of brain trauma; low animal mortality and prolonged sensorimotor impairment that provide long-term study of stroke consequences including behavior impairment and recovery; independence on genetic variations of blood pressure and vascular architecture; and high reproducibility. This review describes the current application of the photothrombotic stroke model for the study of cellular and molecular mechanisms of stroke development and ischemic penumbra formation, as well as for the search of anti-stroke drugs.

Keywords

Photothrombotic stroke Ischemia Penumbra Neurodegeneration Neuroprotection 

Notes

Funding

The work was supported by the Russian Scientific Foundation (# 14-15-00068) and the Ministry of Education and Science of Russian Federation (#6.4951.2017/6.7).

Compliance with Ethical Standards

Conflict of Interest

The author declares that there is no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. 1.
    Holloway PM, Gavins FN. Modeling ischemic stroke in vitro: status quo and future perspectives. Stroke. 2016;47(2):561–9.  https://doi.org/10.1161/STROKEAHA.115.011932.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Auriel E, Bornstein NM. Neuroprotection in acute ischemic stroke-current status. J Cell Mol Med. 2010;14(9):2200–2.  https://doi.org/10.1111/j.1582-4934.2010.01135.x.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Iadecola C, Anrather J. Stroke research at a crossroad: asking the brain for directions. Nat Neurosci. 2011;14(11):1363–8.  https://doi.org/10.1038/nn.2953.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77.  https://doi.org/10.1002/ana.20741.CrossRefPubMedGoogle Scholar
  5. 5.
    Ginsberg MD. Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology. 2008;55(3):363–89.  https://doi.org/10.1016/j.neuropharm.2007.12.007.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jain KK. The handbook of neuroprotection. New York: Springer Science + Business Media; 2011.  https://doi.org/10.1007/978-1-61779-049-2.CrossRefGoogle Scholar
  7. 7.
    Muresanu DF, Buzoianu A, Florian SI, von Wild T. Towards a roadmap in brain protection and recovery. J Cell Mol Med. 2012;16(12):2861–71.  https://doi.org/10.1111/j.1582-4934.2012.01605.x.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Min J, Farooq MU, Gorelick PB. Neuroprotective agents in ischemic stroke: past failures and future opportunities. Clin Invest. 2013;3(12):1167–77.  https://doi.org/10.4155/cli.13.91.CrossRefGoogle Scholar
  9. 9.
    Majid A. Neuroprotection in stroke: past, present, and future. ISRN Neurol. 2014;2014:515716.  https://doi.org/10.1155/2014/515716. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Karsy M, Brock A, Guan J, Taussky P, Kalani MY, Park MS. Neuroprotective strategies and the underlying molecular basis of cerebrovascular stroke. Neurosurg Focus. 2017;42(4):E3.  https://doi.org/10.3171/2017.1.FOCUS16522.CrossRefPubMedGoogle Scholar
  11. 11.
    Rajah GB, Ding Y. Experimental neuroprotection in ischemic stroke: a concise review. Neurosurg Focus. 2017;42(4):E2.  https://doi.org/10.3171/2017.1.FOCUS16497.CrossRefPubMedGoogle Scholar
  12. 12.
    Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54(1):34–66.  https://doi.org/10.1016/j.brainresrev.2006.11.003.CrossRefPubMedGoogle Scholar
  13. 13.
    Puyal J, Ginet V, Clarke PG. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol. 2013;105:24–48.  https://doi.org/10.1016/j.pneurobio.2013.03.002.CrossRefPubMedGoogle Scholar
  14. 14.
    Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, et al. Etiology of stroke and choice of models. Int J Stroke. 2012;7(5):398–406.  https://doi.org/10.1111/j.1747-4949.2012.00838.x.
  15. 15.
    Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017;133(2):245–61.  https://doi.org/10.1007/s00401-017-1667-0.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mergenthaler P, Meisel A. Do stroke models model stroke? Dis Model Mech. 2012;5(6):718–25.  https://doi.org/10.1242/dmm.010033.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J. 2010;4(2):34–8.  https://doi.org/10.2174/1874205X01004020034.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011;6(1):11.  https://doi.org/10.1186/1750-1326-6-11.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445–54.  https://doi.org/10.2147/DDDT.S56071.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. Neuro Rx. 2005;2(3):396–409.  https://doi.org/10.1602/neurorx.2.3.396.CrossRefGoogle Scholar
  21. 21.
    Toyota S, Graf R, Valentino M, Yoshimine T, Heiss WD. Malignant infarction in cats after prolonged middle cerebral artery occlusion: glutamate elevation related to decrease of cerebral perfusion pressure. Stroke. 2002;33(5):1383–91.  https://doi.org/10.1161/01.STR.0000015557.18508.DD.CrossRefPubMedGoogle Scholar
  22. 22.
    Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol. 1985;17(5):497–504.  https://doi.org/10.1002/ana.410170513.CrossRefPubMedGoogle Scholar
  23. 23.
    Uzdensky AB. Cellular and molecular mechanisms of photodynamic therapy. Sankt-Petersburg: Nauka; 2010. (in Russian)Google Scholar
  24. 24.
    Yoo JO, Ha KS. New insights into the mechanisms for photodynamic therapy-induced cancer cell death. Int Rev Cell Mol Biol. 2012;295:139–74.  https://doi.org/10.1016/B978-0-12-394306-4.00010-1.CrossRefPubMedGoogle Scholar
  25. 25.
    Kessel D. Apoptosis and associated phenomena as determinants of the efficacy of photodynamic therapy. Photochem Photobiol Sci. 2015;14(8):1397–402.  https://doi.org/10.1039/c4pp00413b.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Benov L. Photodynamic therapy: current status and future directions. Med Princ Pract. 2015;24(Suppl 1):14–28.  https://doi.org/10.1159/000362416.CrossRefPubMedGoogle Scholar
  27. 27.
    Allison RR, Moghissi K. Oncologic photodynamic therapy: clinical strategies that modulate mechanisms of action. Photodiagn Photodyn Ther. 2013;10(4):331–41.  https://doi.org/10.1016/j.pdpdt.2013.03.011.CrossRefGoogle Scholar
  28. 28.
    Bechet D, Mordon SR, Guillemin F, Barberi-Heyob MA. Photodynamic therapy of malignant brain tumours: a complementary approach to conventional therapies. Cancer Treat Rev. 2014;40(2):229–41.  https://doi.org/10.1016/j.ctrv.2012.07.004.CrossRefPubMedGoogle Scholar
  29. 29.
    Quirk BJ, Brandal G, Donlon S, Vera JC, Mang TS, Foy AB, et al. Photodynamic therapy (PDT) for malignant brain tumors—where do we stand? Photodiagn Photodyn Ther. 2015;12(3):530–44.  https://doi.org/10.1016/j.pdpdt.2015.04.009.
  30. 30.
    Garland MJ, Cassidy CM, Woolfson D, Donnelly RF. Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Med Chem. 2009;1(4):667–91.  https://doi.org/10.4155/fmc.09.55.CrossRefPubMedGoogle Scholar
  31. 31.
    Uzdensky AB, Ma LW, Iani V, Hjortland GO, Steen HB, Moan J. Intracellular localisation of hypericin in human glioblastoma and carcinoma cell lines. Lasers Med Sci. 2001;16(4):276–83.  https://doi.org/10.1007/PL00011364.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen B, Pogue BW, Hoopes PJ, Hasan T. Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr. 2006;16(4):279–305.  https://doi.org/10.1615/CritRevEukarGeneExpr.v16.i4.10.CrossRefPubMedGoogle Scholar
  33. 33.
    Schmitt F, Juillerat-Jeanneret L. Drug targeting strategies for photodynamic therapy. Anti Cancer Agents Med Chem. 2012;12(5):500–25.  https://doi.org/10.2174/187152012800617830.CrossRefGoogle Scholar
  34. 34.
    Dietrich WD, Busto R, Watson BD, Scheinberg P, Ginsberg MD. Photochemically induced cerebral infarction. II. Edema and blood–brain barrier disruption. Acta Neuropathol (Berl). 1987;72(4):326–34.  https://doi.org/10.1007/BF00687263.CrossRefGoogle Scholar
  35. 35.
    Ishikawa M, Sekizuka E, Oshio C, Sato S, Yamaguchi N, Terao S, et al. Platelet adhesion and arteriolar dilation in the photothrombosis: observation with the rat closed cranial and spinal windows. J Neurol Sci. 2002;194(1):59–69.  https://doi.org/10.1016/S0022-510X(01)00673-6.
  36. 36.
    Seery VL, Morgan WT, Muller-Eberhard U. Interaction of rabbit hemopexin with rose bengal and photooxidation of the rose bengal-hemopexin complex. J Biol Chem. 1975;250(16):6439–44.PubMedGoogle Scholar
  37. 37.
    Markgraf CG, Kraydieh S, Prado R, Watson BD, Dietrich WD, Ginsberg MD. Comparative histopathologic consequences of photothrombotic occlusion of the distal middle cerebral artery in Sprague-Dawley and Wistar rats. Stroke. 1993;24(2):286–92.  https://doi.org/10.1161/01.STR.24.2.286.CrossRefPubMedGoogle Scholar
  38. 38.
    Alaverdashvili M, Paterson PG, Bradley MP. Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model. J Neurosci Methods. 2015;247:58–66.  https://doi.org/10.1016/j.jneumeth.2015.03.029.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Demyanenko SV, Panchenko SN, Uzdensky AB. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochem Mosc. 2015;80(6):790–9.  https://doi.org/10.1134/S0006297915060152.CrossRefGoogle Scholar
  40. 40.
    Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A. Photothrombotic infarct in the rat brain cortex: protein profile and morphological changes in penumbra. Mol Neurobiol. 2017;54(6):4172–88.  https://doi.org/10.1007/s12035-016-9964-5. CrossRefPubMedGoogle Scholar
  41. 41.
    Demyanenko S, Uzdensky A. Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. Mol Neurobiol. 2017;54(9):6839–56.  https://doi.org/10.1007/s12035-016-0191-x.CrossRefPubMedGoogle Scholar
  42. 42.
    Song H, Park JY, Kim HS, Lee MC, Kim Y, Kim HI. Circumscribed capsular infarct modeling using a photothrombotic technique. J Vis Exp. 2016;(112)  https://doi.org/10.3791/53281.
  43. 43.
    Labat-gest V, Tomasi S. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp. 2013;76. doi:  https://doi.org/10.3791/50370.
  44. 44.
    Talley Watts L, Zheng W, Garling RJ, Frohlich VC, Lechleiter JD. Rose Bengal photothrombosis by confocal optical imaging in vivo: a model of single vessel stroke. J Vis Exp. 2015;100:e52794.  https://doi.org/10.3791/52794. CrossRefGoogle Scholar
  45. 45.
    Liu NW, Ke CC, Zhao Y, Chen YA, Chan KC, Tan DT, et al. Evolutional characterization of photochemically induced stroke in rats: a multimodality imaging and molecular biological study. Transl Stroke Res. 2017;8(3):244–56.  https://doi.org/10.1007/s12975-016-0512-4.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen F, Suzuki Y, Nagai N, Jin L, Yu J, Wang H, et al. Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: evolution monitored with MR imaging and histopathology. Eur J Radiol. 2007;63(1):68–75.  https://doi.org/10.1016/j.ejrad.2007.01.005.
  47. 47.
    Lee VM, Burdett NG, Carpenter A, Hall LD, Pambakian PS, Patel S, et al. Evolution of photochemically induced focal cerebral ischemia in the rat magnetic resonance imaging and histology. Stroke. 1996;27(11):2110–9.  https://doi.org/10.1161/01.STR.27.11.2110.CrossRefPubMedGoogle Scholar
  48. 48.
    Qian C, Li PC, Jiao Y, Yao HH, Chen YC, Yang J, et al. Precise characterization of the penumbra revealed by MRI: a modified photothrombotic stroke model study. PLoS One. 2016;11(4):e0153756.  https://doi.org/10.1371/journal.pone.0153756.
  49. 49.
    Yao H, Ibayashi S, Sugimori H, Fujii K, Fujishima M. Simplified model of krypton laser-induced thrombotic distal middle cerebral artery occlusion in spontaneously hypertensive rats. Stroke. 1996;27(2):333–6.  https://doi.org/10.1161/01.STR.27.2.333.CrossRefPubMedGoogle Scholar
  50. 50.
    Parthasarathy AB, Kazm SM, Dunn AK. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomed Opt Express. 2010;1(1):246–59.  https://doi.org/10.1364/BOE.1.000246.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu Q, Li Y, Lu H, Tong S. Real-time high resolution laser speckle imaging of cerebral vascular changes in a rodent photothrombosis model. Biomed Opt Express. 2014;5(5):1483–93.  https://doi.org/10.1364/BOE.5.001483.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kuroiwa T, Xi G, Hua Y, Nagaraja TN, Fenstermacher JD, Keep RF. Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen. Stroke. 2009;40(1):248–53.  https://doi.org/10.1161/STROKEAHA.108.527853.CrossRefPubMedGoogle Scholar
  53. 53.
    Kim HS, Kim D, Kim RG, Kim JM, Chung E, Neto PR, et al. A rat model of photothrombotic capsular infarct with a marked motor deficit: a behavioral, histologic, and microPET study. J Cereb Blood Flow Metab. 2014;34(4):683–9.  https://doi.org/10.1038/jcbfm.2014.2.
  54. 54.
    Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein SP, et al. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair. 2002;16(4):326–33.  https://doi.org/10.1177/154596830201600403.
  55. 55.
    Moon SK, Alaverdashvili M, Cross AR, Whishaw IQ. Both compensation and recovery of skilled reaching following small photothrombotic stroke to motor cortex in the rat. Exp Neurol. 2009;218(1):145–53.  https://doi.org/10.1016/j.expneurol.2009.04.021.CrossRefPubMedGoogle Scholar
  56. 56.
    Lu H, Li Y, Yuan L, Li H, Lu X, Tong S. Induction and imaging of photothrombotic stroke in conscious and freely moving rats. J Biomed Opt. 2014;19(9):96013.  https://doi.org/10.1117/1.JBO.19.9.096013.CrossRefPubMedGoogle Scholar
  57. 57.
    Yu C-L, Zhou H, Chai A-P, Yang YX, Mao RR, Xu L. Whole-scale neurobehavioral assessments of photothrombotic ischemia in freely moving mice. J Neurosci Methods. 2015;239:100–7.  https://doi.org/10.1016/j.jneumeth.2014.10.004.CrossRefPubMedGoogle Scholar
  58. 58.
    Lapash Daniels CM, Ayers KL, Finley AM, Culver JP, Goldberg MP. Axon sprouting in adult mouse spinal cord after motor cortex stroke. Neurosci Lett. 2009;450(2):191–5.  https://doi.org/10.1016/j.neulet.2008.11.017.CrossRefPubMedGoogle Scholar
  59. 59.
    Harrison TC, Silasi G, Boyd JD, Murphy TH. Displacement of sensory maps and disorganization of motor cortex after targeted stroke in mice. Stroke. 2013;44(8):2300–6.  https://doi.org/10.1161/STROKEAHA.113.001272.CrossRefPubMedGoogle Scholar
  60. 60.
    Hertz L. Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology. 2008;55(3):289–309.  https://doi.org/10.1016/j.neuropharm.2008.05.023. CrossRefPubMedGoogle Scholar
  61. 61.
    Mongin A. Disruption of ionic and cell volume homeostasis in cerebral ischemia: the perfect storm. Pathophysiology. 2007;14(3–4):183–93.  https://doi.org/10.1016/j.pathophys.2007.09.009.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Leichsenring A, Riedel T, Qin Y, Rubini P, Illes P. Anoxic depolarization of hippocampal astrocytes: possible modulation of P2X7 receptors. Neurochem Int. 2013;62(1):15–22.  https://doi.org/10.1016/j.neuint.2012.11.002.CrossRefPubMedGoogle Scholar
  63. 63.
    Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34(4–5):325–37.  https://doi.org/10.1016/S0143-4160(03)00141-6.CrossRefPubMedGoogle Scholar
  64. 64.
    Yamashima T, Oikawa S. The role of lysosomal rupture in neuronal death. Prog Neurobiol. 2009;89(4):343–58.  https://doi.org/10.1016/j.pneurobio.2009.09.003.CrossRefPubMedGoogle Scholar
  65. 65.
    Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uni-porter is a highly selective ion channel. Nature. 2004;427(6972):360–4.  https://doi.org/10.1038/nature02246.CrossRefPubMedGoogle Scholar
  66. 66.
    Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9.  https://doi.org/10.1126/science.1099320.CrossRefPubMedGoogle Scholar
  67. 67.
    Nanetti L, Taffi R, Vignini A, Moroni C, Raffaelli F, Bacchetti T, et al. Reactive oxygen species plasmatic levels in ischemic stroke. Mol Cell Biochem. 2007;303(1–2):19–25.  https://doi.org/10.1007/s11010-007-9451-4.
  68. 68.
    Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci. 2007;27(5):1129–38.  https://doi.org/10.1523/JNEUROSCI.4468-06.2007.CrossRefPubMedGoogle Scholar
  69. 69.
    Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischemic stroke. Int J Stroke. 2009;4(6):461–70.  https://doi.org/10.1111/j.1747-4949.2009.00387.x.CrossRefPubMedGoogle Scholar
  70. 70.
    Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011;14(8):1505–17.  https://doi.org/10.1089/ars.2010.3576.
  71. 71.
    Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL, Chan PH. Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab. 2005;25(1):41–53.  https://doi.org/10.1038/sj.jcbfm.9600005.CrossRefPubMedGoogle Scholar
  72. 72.
    Yoshida H, Ashikawa Y, Itoh S, Nakagawa T, Asanuma A, Tanabe S, et al. K-134, a phosphodiesterase 3 inhibitor, prevents brain damage by inhibiting thrombus formation in a rat cerebral infarction model. PLoS One. 2012;7(10):e46432.  https://doi.org/10.1371/journal.pone.0046432.
  73. 73.
    Frederix K, Chauhan AK, Kisucka J, Zhao BQ, Hoff EI, Spronk HM, et al. Platelet adhesion receptors do not modulate infarct volume after a photochemically induced stroke in mice. Brain Res. 2007;1185:239–45.  https://doi.org/10.1016/j.brainres.2007.07.103.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kleinschnitz C, Braeuninger S, Pham M, Austinat M, Nölte I, Renné T, et al. Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis. Stroke. 2008;39(4):1262–8.  https://doi.org/10.1161/STROKEAHA.107.496448.CrossRefPubMedGoogle Scholar
  75. 75.
    Hoff EI, Egbrink MG, Steinbusch HW, van Oostenbrugge RJ. In vivo visualization of vascular leakage in photochemically induced cortical infarction. J Neurosci Methods. 2005;141(1):135–41.  https://doi.org/10.1016/j.jneumeth.2004.06.004.
  76. 76.
    Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med. 2000;78(1):3–13.  https://doi.org/10.1007/s001090000077.CrossRefPubMedGoogle Scholar
  77. 77.
    Kitayama J, Kitazono T, Yao H, Ooboshi H, Takaba H, Ago T, et al. Inhibition of Na+/H+ exchanger reduces infarct volume of focal cerebral ischemia in rats. Brain Res. 2001;922(2):223–8.  https://doi.org/10.1016/S0006-8993(01)03175-4.
  78. 78.
    Kuroiwa T, Xi G, Hua Y, Nagaraja TN, Fenstermacher JD, Keep RF. Brain edema and blood-brain barrier opening after photothrombotic ischemia in rat. Acta Neurochir Suppl. 2013;118:11–5.  https://doi.org/10.1007/978-3-7091-1434-6_2. PubMedCrossRefGoogle Scholar
  79. 79.
    Gadamski R, Barskow IW, Szumańska G, Wojda R. Blood-brain barrier disturbances and morphological changes in rat brain after photochemically induced focal ischaemia. Folia Neuropathol. 2001;39(3):155–61.PubMedGoogle Scholar
  80. 80.
    Choi KH, Kim HS, Park MS, Kim JT, Kim JH, Cho KA, et al. Regulation of caveolin-1 expression determines early brain edema after experimental focal cerebral ischemia. Stroke. 2016;47(5):1336–43.  https://doi.org/10.1161/STROKEAHA.116.013205.
  81. 81.
    Kim GW, Lewén A, Copin J, Watson BD, Chan PH. The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience. 2001;105(4):1007–18.  https://doi.org/10.1016/S0306-4522(01)00237-8.CrossRefPubMedGoogle Scholar
  82. 82.
    Caine S, Hackett MJ, Hou H, Kumar S, Maley J, Ivanishvili Z, et al. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol Dis. 2016;91:132–42.  https://doi.org/10.1016/j.nbd.2016.03.006.
  83. 83.
    Tuor UI, Deng Q, Rushforth D, Foniok T, Qiao M. Model of minor stroke with mild peri-infarct ischemic injury. J Neurosci Methods. 2016;268:56–65.  https://doi.org/10.1016/j.jneumeth.2016.04.025.CrossRefPubMedGoogle Scholar
  84. 84.
    Nahirney PC, Reeson P, Brown CE. Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J Cereb Blood Flow Metab. 2016;36(2):413–25.  https://doi.org/10.1177/0271678X15608396.CrossRefPubMedGoogle Scholar
  85. 85.
    Lapilover EG, Lippmann K, Salar S, Maslarova A, Dreier JP, Heinemann U, et al. Peri-infarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiol Dis. 2012;48(3):495–506.  https://doi.org/10.1016/j.nbd.2012.06.024.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wester P, Watson BD, Prado R, Dietrich WD. A photothrombotic ‘ring’ model of rat stroke-in-evolution displaying putative penumbral inversion. Stroke. 1995;26(3):444–50.  https://doi.org/10.1161/01.STR.26.3.444.CrossRefPubMedGoogle Scholar
  87. 87.
    Gu WG, Brännström T, Jiang W, Wester P. A photothrombotic ring stroke model in rats with remarkable morphological tissue recovery in the region at risk. Exp Brain Res. 1999;125:171–83.CrossRefPubMedGoogle Scholar
  88. 88.
    Hilger T, Blunk JA, Hoehn M, Mies G, Wester P. Characterization of a novel chronic photothrombotic ring stroke model in rats by magnetic resonance imaging, biochemical imaging, and histology. J Cereb Blood Flow Metab. 2004;24(7):789–97.  https://doi.org/10.1097/01.WCB.0000123905.17746.DB.CrossRefPubMedGoogle Scholar
  89. 89.
    Nakamura K, Kamouchi M, Arimura K, Nishimura A, Kuroda J, Ishitsuka K, et al. Extracellular acidification activates cAMP responsive element binding protein via Na+/H+ exchanger isoform 1-mediated Ca2+oscillation in central nervous system pericytes. Arterioscler Thromb Vasc Biol. 2012;32(11):2670–7.  https://doi.org/10.1161/ATVBAHA.112.254946.
  90. 90.
    Yao H, Takasawa R, Fukuda K, Shiokawa D, Sadanaga-Akiyoshi F, Ibayashi S, et al. DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Brain Res Mol Brain Res. 2001;91(1-2):112–8.  https://doi.org/10.1016/S0169-328X(01)00135-8.
  91. 91.
    Eichenbaum JW, Pevsner PH, Pivawer G, Kleinman GM, Chiriboga L, Stern A, et al. A murine photochemical stroke model with histologic correlates of apoptotic and nonapoptotic mechanisms. J Pharmacol Toxicol Methods. 2002;47(2):67–71.  https://doi.org/10.1016/S1056-8719(02)00215-0.
  92. 92.
    Hu X, Johansson IM, Brännström T, Olsson T, Wester P. Long-lasting neuronal apoptotic cell death in regions with severe ischemia after photothrombotic ring stroke in rats. Acta Neuropathol. 2002;104(5):462–70.  https://doi.org/10.1007/s00401-002-0579-8.PubMedCrossRefGoogle Scholar
  93. 93.
    Gu W, Brännström T, Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab. 2000;20(8):1166–73.  https://doi.org/10.1097/00004647-200008000-00002.CrossRefPubMedGoogle Scholar
  94. 94.
    Kharlamov A, Uz T, Joo JY, Manev H. Pharmacological characterization of apoptotic cell death in a model of photothrombotic brain injury in rats. Brain Res. 1996;734:1–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Love S. Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2):267–82.  https://doi.org/10.1016/S0278-5846(03)00022-8.CrossRefGoogle Scholar
  96. 96.
    Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, et al. Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia. Mol Cell Neurosci. 2007;34(1):40–7.  https://doi.org/10.1016/j.mcn.2006.09.009.
  97. 97.
    Chen TY, Lee MY, Chen HY, Kuo YL, Lin SC, Wu TS, et al. Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J Pineal Res. 2006;40(3):242–50.  https://doi.org/10.1111/j.1600-079X.2005.00307.x.CrossRefPubMedGoogle Scholar
  98. 98.
    Bierbower SM, Choveau FS, Lechleiter JD, Shapiro MS. Augmentation of M-type (KCNQ) potassium channels as a novel strategy to reduce stroke-induced brain injury. J Neurosci. 2015;35(5):2101–11.  https://doi.org/10.1523/JNEUROSCI.3805-14.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Piao MS, Lee JK, Jang JW, Hur H, Lee SS, Xiao L, et al. Melatonin improves functional outcome via inhibition of matrix metalloproteinases-9 after photothrombotic spinal cord injury in rats. Acta Neurochir. 2014;156(11):2173–82.  https://doi.org/10.1007/s00701-014-2119-4.
  100. 100.
    Aerden LA, Kessels FA, Rutten BP, Lodder J, Steinbusch HW. Diazepam reduces brain lesion size in a photothrombotic model of focal ischemia in rats. Neurosci Lett. 2004;367(1):76–8.  https://doi.org/10.1016/j.neulet.2004.05.083.CrossRefPubMedGoogle Scholar
  101. 101.
    Liu Y, Sun Q, Chen X, Jing L, Wang W, Yu Z, et al. Linolenic acid provides multi-cellular protective effects after photothrombotic cerebral ischemia in rats. Neurochem Res. 2014;39(9):1797–808.  https://doi.org/10.1007/s11064-014-1390-3.
  102. 102.
    Demougeot C, Van Hoecke M, Bertrand N, Prigent-Tessier A, Mossiat C, Beley A, et al. Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2′-dipyridyl in the rat photothrombotic ischemic stroke model. J Pharmacol Exp Ther. 2004;311(3):1080–7.  https://doi.org/10.1124/jpet.104.072744.
  103. 103.
    Van Hoecke M, Prigent-Tessier A, Bertrand N, Prevotat L, Marie C, Beley A. Apoptotic cell death progression after photothrombotic focal cerebral ischaemia: effects of the lipophilic iron chelator 2,2′-dipyridyl. Eur J Neurosci. 2005;22(5):1045–56.  https://doi.org/10.1111/j.1460-9568.2005.04297.x.CrossRefPubMedGoogle Scholar
  104. 104.
    Millerot-Serrurot EL, Bertrand N, Mossiat C, Faure P, Prigent-Tessier A, Garnier P, et al. Temporal changes in free iron levels after brain ischemia relevance to the timing of iron chelation therapy in stroke. Neurochem Int. 2008;52(8):1442.  https://doi.org/10.1016/j.neuint.2008.04.002.CrossRefPubMedGoogle Scholar
  105. 105.
    López-Valdés HE, Clarkson AN, Ao Y, Charles AC, Carmichael ST, Sofroniew MV, et al. Memantine enhances recovery from stroke. Stroke. 2014;45(7):2093–100.  https://doi.org/10.1161/STROKEAHA.113.004476.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Jang JY, Choi YW, Kim HN, Kim YR, Hong JW, Bae DW, et al. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model. PLoS One. 2014;9:e85322.  https://doi.org/10.1371/journal.pone.0085322. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Lorrio S, Gómez-Rangel V, Negredo P, Egea J, Leon R, Romero A, et al. Novel multitarget ligand ITH33/IQM9.21 provides neuroprotection in in vitro and in vivo models related to brain ischemia. Neuropharmacology. 2013;67:403–11.  https://doi.org/10.1016/j.neuropharm.2012.12.001.
  108. 108.
    Zou LY, Cheung RT, Liu S, Li G, Huang L. Melatonin reduces infarction volume in a photothrombotic stroke model in the wild-type but not cyclooxygenase-1-gene knockout mice. J Pineal Res. 2006;41(2):150–6.  https://doi.org/10.1111/j.1600-079X.2006.00349.x.CrossRefPubMedGoogle Scholar
  109. 109.
    Parada E, Buendia I, León R, Negredo P, Romero A, Cuadrado A, et al. Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res. 2014;56(2):204–12.  https://doi.org/10.1111/jpi.12113.
  110. 110.
    Jang JW, Lee JK, Lee MC, Piao MS, Kim SH, Kim HS. Melatonin reduced the elevated matrix metalloproteinase-9 level in a rat photothrombotic stroke model. J Neurol Sci. 2012;323(1–2):221–7.  https://doi.org/10.1016/j.jns.2012.09.021.CrossRefPubMedGoogle Scholar
  111. 111.
    Jang JW, Lee JK, Hur H, Kim TW, Joo SP, Piao MS. Rutin improves functional outcome via reducing the elevated matrix metalloproteinase-9 level in a photothrombotic focal ischemic model of rats. J Neurol Sci. 2014;339(1–2):75–80.  https://doi.org/10.1016/j.jns.2014.01.024.CrossRefPubMedGoogle Scholar
  112. 112.
    Park CH, Shin TK, Lee HY, Kim SJ, Lee WS. Matrix metalloproteinase inhibitors attenuate neuroinflammation following focal cerebral ischemia in mice. Korean J Physiol Pharmacol. 2011;15(2):115–22.  https://doi.org/10.4196/kjpp.2011.15.2.115.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, et al. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal. 2013;19(11):1135–48.  https://doi.org/10.1089/ars.2012.4671.
  114. 114.
    Porritt MJ, Andersson HC, Hou L, Nilsson Å, Pekna M, Pekny M, et al. Photothrombosis-induced infarction of the mouse cerebral cortex is not affected by the Nrf2-activator sulforaphane. PLoS One. 2012;7(7):e41090.  https://doi.org/10.1371/journal.pone.0041090.
  115. 115.
    Madinier A, Bertrand N, Rodier M, Quirié A, Mossiat C, Prigent-Tessier A. Ipsilateral versus contralateral spontaneous post-stroke neuroplastic changes: involvement of BDNF? Neuroscience. 2013;231:169–81.  https://doi.org/10.1016/j.neuroscience.2012.11.054.CrossRefPubMedGoogle Scholar
  116. 116.
    Schäbitz WR, Berger C, Kollmar R, Seitz M, Tanay E, Kiessling M, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke. 2004;35(4):992–7.  https://doi.org/10.1161/01.STR.0000119754.85848.0D.
  117. 117.
    Li PC, Jiao Y, Ding J, Chen YC, Cui Y, Qian C, et al. Cystamine improves functional recovery via axon remodeling and neuroprotection after stroke in mice. CNS Neurosci Ther. 2015;21(3):231–40.  https://doi.org/10.1111/cns.12343.
  118. 118.
    Zhan H, Sun SJ, Cai J, Li YQ, CL H, Lee DH, et al. The effect of an NgR1 antagonist on the neuroprotection of cortical axons after cortical infarction in rats. Neurochem Res. 2013;38(7):1333–40.  https://doi.org/10.1007/s11064-013-1026-z.CrossRefPubMedGoogle Scholar
  119. 119.
    Shin TK, Kang MS, Lee HY, Seo MS, Kim SG, Kim CD, et al. Fluoxetine and sertraline attenuate postischemic brain injury in mice. Korean J Physiol Pharmacol. 2009;13(3):257–63.  https://doi.org/10.4196/kjpp.2009.13.3.257.
  120. 120.
    Romanova GA, Shakova FM, Barskov IV, Stel'mashuk EV, Genrikhs EE, Cheremnykh AM, et al. Neuroprotective and antiamnesic effect of erythropoietin derivatives after experimental ischemic injury of cerebral cortex. Bull Exp Biol Med. 2015;158(3):318–21.  https://doi.org/10.1007/s10517-015-2751-x.CrossRefPubMedGoogle Scholar
  121. 121.
    Urnukhsaikhan E, Mishig-Ochir T, Kim SC, Park JK, Seo YK. Neuroprotective effect of low frequency-pulsed electromagnetic fields in ischemic stroke. Appl Biochem Biotechnol. 2017;181(4):1360–71.  https://doi.org/10.1007/s12010-016-2289-z.
  122. 122.
    Sutherland BA, Minnerup J, Balami JS, Arba F, Buchan AM, Kleinschnitz C. Neuroprotection for ischaemic stroke: translation from the bench to the bedside. Int J Stroke. 2012;7(5):407–18.  https://doi.org/10.1111/j.1747-4949.2012.00770.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Molecular Neurobiology, Academy of Biology and BiotechnologySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations