Advertisement

Translational Stroke Research

, Volume 8, Issue 5, pp 484–493 | Cite as

Alpha-7 Nicotinic Receptor Signaling Pathway Participates in the Neurogenesis Induced by ChAT-Positive Neurons in the Subventricular Zone

  • Jianping WangEmail author
  • Zhengfang Lu
  • Xiaojie Fu
  • Di Zhang
  • Lie Yu
  • Nan Li
  • Yufeng Gao
  • Xianliang Liu
  • Chunmao Yin
  • Junji Ke
  • Liyuan Li
  • Mengmeng Zhai
  • Shiwen Wu
  • Jiahong Fan
  • Liang Lv
  • Junchao Liu
  • Xuemei Chen
  • Qingwu Yang
  • Jian WangEmail author
Original Article

Abstract

Choline acetyltransferase-positive (ChAT+) neurons within the subventricular zone (SVZ) have been shown to promote neurogenesis after stroke in mice by secreting acetylcholine (ACh); however, the mechanisms remain unclear. Receptors known to bind ACh include the nicotinic ACh receptors (nAChRs), which are present in the SVZ and have been shown to be important for cell proliferation, differentiation, and survival. In this study, we investigated the neurogenic role of the alpha-7 nAChR (α7 nAChR) in a mouse model of middle cerebral artery occlusion (MCAO) by using α7 nAChR inhibitor methyllycaconitine. Mice subjected to MCAO exhibited elevated expression of cytomembrane and nuclear fibroblast growth factor receptor 1 (FGFR1), as well as increased expression of PI3K, pAkt, doublecortin (DCX), polysialylated - neuronal cell adhesion molecule (PSA-NCAM), and mammalian achaete-scute homolog 1 (Mash1). MCAO mice also had more glial fibrillary acidic protein (GFAP)/5-bromo-2′-deoxyuridine (BrdU)-positive cells and DCX-positive cells in the SVZ than did the sham-operated group. Methyllycaconitine treatment increased cytomembrane FGFR1 expression and GFAP/BrdU-positive cells, upregulated the levels of phosphoinositide 3-kinase (PI3K) and phospho-Akt (pAkt), decreased nuclear FGFR1 expression, decreased the number of DCX-positive cells, and reduced the levels of DCX, PSA-NCAM, and Mash1 in the SVZ of MCAO mice compared with levels in vehicle-treated MCAO mice. MCAO mice treated with α7 nAChR agonist PNU-282987 exhibited the opposite effects. Our data show that α7 nAChR may decrease the proliferation of neural stem cells and promote differentiation of existing neural stem cells after stroke. These results identify a new mechanism of SVZ ChAT+ neuron-induced neurogenesis.

Keywords

Neurogenesis Subventricular zone Alpha-7 nicotinic acetylcholine receptor ChAT-positive neuron 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81571137, 81271284), the National Institutes of Health (R01NS078026, R01AT007317), and a "Stimulating and Advancing ACCM Research (StAAR)" grant from the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University. We thank Claire Levine for assistance with this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors assert no conflict of interest.

References

  1. 1.
    Zhang W, Cheng J, Vagnerova K, Ivashkova Y, Young J, Cornea A, et al. Effects of androgens on early post-ischemic neurogenesis in mice. Transl Stroke Res. 2014;5(2):301–11.Google Scholar
  2. 2.
    Li Z, Wang J, Zhao C, Ren K, Xia Z, Yu H, et al. Acute blockage of Notch signaling by DAPT induces neuroprotection and neurogenesis in the neonatal rat brain after stroke. Transl Stroke Res. 2016;7(2):132–40.Google Scholar
  3. 3.
    Davis CK, Laud PJ, Bahor Z, Rajanikant GK, Majid A. Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke. J Cereb Blood Flow Metab. 2016;36(10):1686–94.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Inta D, Gass P. Is forebrain neurogenesis a potential repair mechanism after stroke? J Cereb Blood Flow Metab. 2015;35(7):1220–1.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kleinschnitz C, Mencl S, Kleikers PW, Schuhmann MK, G López M, Casas AI, et al. NOS knockout or inhibition but not disrupting PSD-95-NOS interaction protect against ischemic brain damage. J Cereb Blood Flow Metab. 2016;36(9):1508–12.Google Scholar
  6. 6.
    Ji R, Meng L, Jiang X, Cvm NK, Ding J, Li Q, et al. TAM receptors support neural stem cell survival, proliferation and neuronal differentiation. PLoS One. 2014;9(12):e115140.Google Scholar
  7. 7.
    Venkatesan A, Uzasci L, Chen Z, Rajbhandari L, Anderson C, Lee M-H, et al. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol Brain. 2011;4:28.Google Scholar
  8. 8.
    Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci. 2010;30(9):3489–98.CrossRefPubMedGoogle Scholar
  9. 9.
    Deshpande A, Bergami M, Ghanem A, Conzelmann K-K, Lepier A, Gotz M, et al. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci U S A. 2013;110(12):E1152–61.Google Scholar
  10. 10.
    Marlier Q, Verteneuil S, Vandenbosch R, Malgrange B. Mechanisms and functional significance of stroke-induced neurogenesis. Front Neurosci. 2015;9:458.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lioutas VA, Alfaro-Martinez F, Bedoya F, Chung CC, Pimentel DA, Novak V. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–75.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Valdebenito R, Ruminot I, Garrido-Gerter P, Fernandez-Moncada I, Forero-Quintero L, Alegria K, et al. Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate. J Cereb Blood Flow Metab. 2016;36(10):1813–22.Google Scholar
  13. 13.
    Vivar C, Potter MC, Choi J, Lee J-Y, Stringer TP, Callaway EM, et al. Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun. 2012;3:1107.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ariga T. The pathogenic role of ganglioside metabolism in Alzheimer's disease-cholinergic neuron-specific gangliosides and neurogenesis. Mol Neurobiol. 2017;54(1):623–38.CrossRefPubMedGoogle Scholar
  15. 15.
    Paez-Gonzalez P, Asrican B, Rodriguez E, Kuo CT. Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17(7):934–42.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang J, Fu X, Zhang D, Yu L, Li N, Lu Z, et al. ChAT-positive neurons participate in subventricular zone neurogenesis after middle cerebral artery occlusion in mice. Behav Brain Res. 2017;316:145–51.Google Scholar
  17. 17.
    Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010;11(2):77–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Kaneko N, Okano H, Sawamoto K. Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulb. Genes Cells. 2006;11(10):1145–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Narla S, Klejbor I, Birkaya B, Lee Y-W, Morys J, Stachowiak EK, et al. Alpha7 nicotinic receptor agonist reactivates neurogenesis in adult brain. Biochem Pharmacol. 2013;86(8):1099–104.Google Scholar
  20. 20.
    Wang P-F, Fang H, Chen J, Lin S, Liu Y, Xiong X-Y, et al. Polyinosinic-polycytidylic acid has therapeutic effects against cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via TLR3. J Immunol. 2014;192(10):4783–94.Google Scholar
  21. 21.
    Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M, et al. Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system. Brain Behav Immun. 2015;43:172–83.Google Scholar
  22. 22.
    Tajiri N, Dailey T, Metcalf C, Mosley YI, Lau T, Staples M, et al. In vivo animal stroke models: a rationale for rodent and non-human primate models. Transl Stroke Res. 2013;4(3):308–21.Google Scholar
  23. 23.
    Hoffmann U, Sheng H, Ayata C, Warner DS. Anesthesia in experimental stroke research. Transl Stroke Res. 2016;7(5):358–67.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J. Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain Behav Immun. 2013;34:56–66.CrossRefPubMedGoogle Scholar
  25. 25.
    Chen Y-J, Nguyen HM, Maezawa I, Grossinger EM, Garing AL, Kohler R, et al. The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. J Cereb Blood Flow Metab. 2016;36(12):2146–61.Google Scholar
  26. 26.
    Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, et al. Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. J Cereb Blood Flow Metab. 2016;36(6):1059–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Yang R, Chen L, Wang HF, Xu BZ, Tomimoto H, Chen L. Anti-amnesic effect of neurosteroid PREGS in Aβ25-35-injected mice through σ1 receptor- and alpha7 nAChR-mediated neuroprotection. Neuropharmacology. 2012;63(6):1042–50.Google Scholar
  28. 28.
    Taslim N, Soderstrom K, Dar MS. Role of mouse cerebellar nicotinic acetylcholine receptor (nAChR) alpha(4)beta(2)- and alpha(7) subtypes in the behavioral cross-tolerance between nicotine and ethanol-induced ataxia. Behav Brain Res. 2011;217(2):282–92.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang C, Chen T, Li G, Zhou L, Sha S, Chen L. Simvastatin prevents beta-amyloid(25-35)-impaired neurogenesis in hippocampal dentate gyrus through alpha7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology. 2015;97:122–32.CrossRefPubMedGoogle Scholar
  30. 30.
    DeVos SL, Miller TM. Direct intraventricular delivery of drugs to the rodent central nervous system. J Vis Exp. 2013;75:e50326.Google Scholar
  31. 31.
    Zhao X, Wu T, Chang C-F, Wu H, Han X, Li Q, et al. Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice. Brain Behav Immun. 2015;46:293–310.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chang CF, Cai L, Wang J. Translational intracerebral hemorrhage: a need for transparent descriptions of fresh tissue sampling and preclinical model quality. Transl Stroke Res. 2015;6(5):384–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhou K, Zhong Q, Wang YC, Xiong XY, Meng ZY, Zhao T, et al. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3beta/PTEN axis. J Cereb Blood Flow Metab. 2017;37(3):967–79.CrossRefPubMedGoogle Scholar
  34. 34.
    Kawamata J, Shimohama S. Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis. 2011;24(Suppl 2):95–109.PubMedGoogle Scholar
  35. 35.
    Chang C-F, Cho S, Wang J. (−)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol. 2014;1(4):258–71.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Szymanski JJ, Wang H, Jamison JT, DeGracia DJ. HuR function and translational state analysis following global brain ischemia and reperfusion. Transl Stroke Res. 2013;4(6):589–603.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25(3):286–96.CrossRefPubMedGoogle Scholar
  38. 38.
    Ma J, Duan Y, Qin Z, Wang J, Liu W, Xu M, et al. Overexpression of alpha CaMKII impairs behavioral flexibility and NMDAR-dependent long-term depression in the medial prefrontal cortex. Neuroscience. 2015;310:528–40.Google Scholar
  39. 39.
    Zhou R, Wu X, Wang Z, Ge J, Chen F. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int Immunopharmacol. 2015;29(2):748–60.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang S, Zhang X, Yuan Y, Tan M, Zhang L, Xue X, et al. BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardiothorac Surg. 2015;47(3):439–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Shang S, Yang YM, Zhang H, Tian L, Jiang JS, Dong YB, et al. Intracerebral GM-CSF contributes to transendothelial monocyte migration in APP/PS1 Alzheimer's disease mice. J Cereb Blood Flow Metab. 2016;36(11):1978–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang Z, Cai Y-Q, Zou F, Bie B, Pan ZZ. Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med. 2011;17(11):1448–55.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, et al. Cerebroprotection of flavanol (−)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radic Biol Med. 2016;92:15–28.CrossRefPubMedGoogle Scholar
  44. 44.
    Wu H, Wu T, Hua W, Dong X, Gao Y, Zhao X, et al. PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiol Aging. 2015;36(3):1439–50.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI insight. 2017;2(7):e90777.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhang Z, Song Y, Zhang Z, Li D, Zhu H, Liang R, et al. Distinct role of heme oxygenase-1 in early- and late-stage intracerebral hemorrhage in 12-month-old mice. J Cereb Blood Flow Metab. 2017;37(1):25–38.CrossRefPubMedGoogle Scholar
  47. 47.
    Wang J, Fu X, Yu L, Li N, Wang M, Liu X, et al. Preconditioning with VEGF enhances angiogenic and neuroprotective effects of bone marrow mononuclear cell transplantation in a rat model of chronic cerebral hypoperfusion. Mol Neurobiol. 2016;53(9):6057–68.CrossRefPubMedGoogle Scholar
  48. 48.
    Lan X, Han X, Li Q, Li Q, Gao Y, Cheng T, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun. 2017;61:326–39.CrossRefPubMedGoogle Scholar
  49. 49.
    Terpolilli NA, Feiler S, Dienel A, Muller F, Heumos N, Friedrich B, et al. Nitric oxide inhalation reduces brain damage, prevents mortality, and improves neurological outcome after subarachnoid hemorrhage by resolving early pial microvasospasms. J Cereb Blood Flow Metab. 2016;36(12):2096–107.CrossRefPubMedGoogle Scholar
  50. 50.
    Liu H, Wang Y, Xiao Y, Hua Z, Cheng J, Jia J. Hydrogen sulfide attenuates tissue plasminogen activator-induced cerebral hemorrhage following experimental stroke. Transl Stroke Res. 2016;7(3):209–19.CrossRefPubMedGoogle Scholar
  51. 51.
    Molinaro P, Sirabella R, Pignataro G, Petrozziello T, Secondo A, Boscia F, et al. Neuronal NCX1 overexpression induces stroke resistance while knockout induces vulnerability via Akt. J Cereb Blood Flow Metab. 2016;36(10):1790–803.CrossRefPubMedGoogle Scholar
  52. 52.
    Jin L, Hu X, Feng L. NT3 inhibits FGF2-induced neural progenitor cell proliferation via the PI3K/GSK3 pathway. J Neurochem. 2005;93(5):1251–61.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhao M, Luo R, Liu Y, Gao L, Fu Z, Fu Q, et al. miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun. 2016;7:11309.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen Y-H, Gianino SM, Gutmann DH. Neurofibromatosis-1 regulation of neural stem cell proliferation and multilineage differentiation operates through distinct RAS effector pathways. Genes Dev. 2015;29(16):1677–82.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Trazzi S, Steger M, Mitrugno VM, Bartesaghi R, Ciani E. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling. J Biol Chem. 2010;285(13):10098–109.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Choy FC, Klaric TS, Leong WK, Koblar SA, Lewis MD. Reduction of the neuroprotective transcription factor Npas4 results in increased neuronal necrosis, inflammation and brain lesion size following ischaemia. J Cereb Blood Flow Metab. 2016;36(8):1449–63.CrossRefPubMedGoogle Scholar
  57. 57.
    Kita Y, Ago Y, Higashino K, Asada K, Takano E, Takuma K, et al. Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and alpha7 nicotinic receptors in mice. Int J Neuropsychopharmacol. 2014;17(12):1957–68.CrossRefPubMedGoogle Scholar
  58. 58.
    Liu Y, Hu J, Wu J, Zhu C, Hui Y, Han Y, et al. Alpha7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation. J Neuroinflammation. 2012;9:98.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Sandilands E, Akbarzadeh S, Vecchione A, McEwan DG, Frame MC, Heath JK. Src kinase modulates the activation, transport and signalling dynamics of fibroblast growth factor receptors. EMBO Rep. 2007;8(12):1162–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jianping Wang
    • 1
    Email author
  • Zhengfang Lu
    • 1
  • Xiaojie Fu
    • 1
  • Di Zhang
    • 1
  • Lie Yu
    • 1
  • Nan Li
    • 1
  • Yufeng Gao
    • 1
  • Xianliang Liu
    • 1
  • Chunmao Yin
    • 1
  • Junji Ke
    • 1
  • Liyuan Li
    • 1
  • Mengmeng Zhai
    • 1
  • Shiwen Wu
    • 1
  • Jiahong Fan
    • 1
  • Liang Lv
    • 1
  • Junchao Liu
    • 1
  • Xuemei Chen
    • 2
  • Qingwu Yang
    • 3
  • Jian Wang
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of NeurologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Human Anatomy, College of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
  3. 3.Department of Neurology, Xinqiao HospitalThird Military Medical UniversityChongqingChina
  4. 4.Department of Anesthesiology/Critical Care Medicine, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations