Translational Stroke Research

, Volume 7, Issue 5, pp 420–438 | Cite as

Critical Role of the Sphingolipid Pathway in Stroke: a Review of Current Utility and Potential Therapeutic Targets

  • Na Sun
  • Richard F. Keep
  • Ya Hua
  • Guohua XiEmail author
Review Article


Sphingolipids are a series of cell membrane-derived lipids which act as signaling molecules and play a critical role in cell death and survival, proliferation, recognition, and migration. Sphingosine-1-phosphate acts as a key signaling molecule and regulates lymphocyte trafficking, glial cell activation, vasoconstriction, endothelial barrier function, and neuronal death pathways which plays a critical role in numerous neurological conditions. Stroke is a second leading cause of death all over the world and effective therapies are still in great demand, including ischemic stroke and hemorrhagic stroke as well as poststroke repair. Significantly, sphingolipid activities change after stroke and correlate with stroke outcome, which has promoted efforts to testify whether the sphingolipid pathway could be a novel therapeutic target in stroke. The sphingolipid metabolic pathway, the connection between the pathway and stroke, as well as therapeutic interventions to manipulate the pathway to reduce stroke-induced brain injury are discussed in this review.


Sphingolipids Sphingosine-1-phosphate Stroke Immune modulation 



This study was supported by grants NS-073595, NS-079157, NS-084049, NS-090925, NS-096917 and NS-091545 from the National Institutes of Health (NIH) and 973 Program-2014CB541600.

Compliance with Ethical Standards

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Front Cell Neurosci. 2014;8:283. PubMed Central PMCID: PMC4162362.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510(7503):58–67. PubMed Central PMCID: PMC4320971.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Obinata H, Hla T. Sphingosine 1-phosphate in coagulation and inflammation. Semin Immunopathol. 2012;34(1):73–91. PubMed Central PMCID: 3237867.PubMedCrossRefGoogle Scholar
  4. 4.
    Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008;8(10):753–63. PubMed Central PMCID: 2600775.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Aktas O, Kury P, Kieseier B, Hartung HP. Fingolimod is a potential novel therapy for multiple sclerosis. Nat Rev Neurol. 2010;6(7):373–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Levkau B. Sphingosine-1-phosphate in the regulation of vascular tone: a finely tuned integration system of S1P sources, receptors, and vascular responsiveness. Circ Res. 2008;103(3):231–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Coussin F, Scott RH, Wise A, Nixon GF. Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. Circ Res. 2002;91(2):151–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier. Trends Mol Med. 2015;21(6):354–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Rosen H, Sanna MG, Cahalan SM, Gonzalez-Cabrera PJ. Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol. 2007;28(3):102–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Cipriani R, Chara JC, Rodriguez-Antiguedad A, Matute C. FTY720 attenuates excitotoxicity and neuroinflammation. J Neuroinflammation. 2015;12:86. PubMed Central PMCID: 4429813.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Pyszko JA, Strosznajder JB. The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson’s disease. Folia neuropathologica/Association of Polish Neuropathologists and Medical Research Centre. Pol Acad Sci. 2014;52(3):260–9.Google Scholar
  12. 12.
    Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Hanada K. Co-evolution of sphingomyelin and the ceramide transport protein CERT. Biochim Biophys Acta. 2014;1841(5):704–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Nixon GF, Mathieson FA, Hunter I. The multi-functional role of sphingosylphosphorylcholine. Prog Lipid Res. 2008;47(1):62–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Kleger A, Liebau S, Lin Q, von Wichert G, Seufferlein T. The impact of bioactive lipids on cardiovascular development. Stem Cells Int. 2011;2011:916180. PubMed Central PMCID: 3159013.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science. 2002;296(5569):879–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science. 2009;323(5913):524–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Kluk MJ, Hla T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochim Biophys Acta. 2002;1582(1–3):72–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Lynch KR. Lysophospholipid receptor nomenclature. Biochim Biophys Acta. 2002;1582(1–3):70–1.PubMedCrossRefGoogle Scholar
  21. 21.
    Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog Lipid Res. 2016;63:50–69.PubMedCrossRefGoogle Scholar
  22. 22.
    Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis. 2015;14:55. PubMed Central PMCID: PMC4470334.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Canals D, Roddy P, Hannun YA. Protein phosphatase 1alpha mediates ceramide-induced ERM protein dephosphorylation: a novel mechanism independent of phosphatidylinositol 4, 5-biphosphate (PIP2) and myosin/ERM phosphatase. J Biol Chem. 2012;287(13):10145–55. PubMed Central PMCID: 3323024.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J, et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med. 2013;5(1):105–21. PubMed Central PMCID: 3569657.PubMedCrossRefGoogle Scholar
  25. 25.
    Fox TE, Houck KL, O’Neill SM, Nagarajan M, Stover TC, Pomianowski PT, et al. Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem. 2007;282(17):12450–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Henry B, Ziobro R, Becker KA, Kolesnick R, Gulbins E. Acid sphingomyelinase. Handb Exp Pharmacol. 2013;215:77–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen Y, Ginis I, Hallenbeck JM. The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2 and reduction of TUNEL-positive cells. J Cereb Blood Flow Metab. 2001;21(1):34–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu J, Ginis I, Spatz M, Hallenbeck JM. Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol. 2000;278(1):C144–53.PubMedGoogle Scholar
  29. 29.
    Zimmermann C, Ginis I, Furuya K, Klimanis D, Ruetzler C, Spatz M, et al. Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain Res. 2001;895(1–2):59–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Pettus BJ, Bielawska A, Subramanian P, Wijesinghe DS, Maceyka M, Leslie CC, et al. Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem. 2004;279(12):11320–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Lamour NF, Wijesinghe DS, Mietla JA, Ward KE, Stahelin RV, Chalfant CE. Ceramide kinase regulates the production of tumor necrosis factor alpha (TNFalpha) via inhibition of TNFalpha-converting enzyme. J Biol Chem. 2011;286(50):42808–17. PubMed Central PMCID: 3234830.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kurokawa T, Yumiya Y, Fujisawa H, Shirao S, Kashiwagi S, Sato M, et al. Elevated concentrations of sphingosylphosphorylcholine in cerebrospinal fluid after subarachnoid hemorrhage: a possible role as a spasmogen. J Clin Neurosci. 2009;16(8):1064–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim HJ, Kim H, Han ES, Park SM, Koh JY, Kim KM, et al. Characterizations of sphingosylphosphorylcholine-induced scratching responses in ICR mice using naltrexon, capsaicin, ketotifen and Y-27632. Eur J Pharmacol. 2008;583(1):92–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Imokawa G, Takagi Y, Higuchi K, Kondo H, Yada Y. Sphingosylphosphorylcholine is a potent inducer of intercellular adhesion molecule-1 expression in human keratinocytes. J Invest Dermatol. 1999;112(1):91–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Okamoto R, Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Imokawa G. Sphingosylphosphorylcholine is upregulated in the stratum corneum of patients with atopic dermatitis. J Lipid Res. 2003;44(1):93–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Byun HJ, Kang KJ, Park MK, Lee HJ, Kang JH, Lee EJ, et al. Ethacrynic acid inhibits sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization via transglutaminase-2 inhibition. Biomol Ther. 2013;21(5):338–42. PubMed Central PMCID: 3825196.CrossRefGoogle Scholar
  37. 37.
    Shirao S, Fujisawa H, Kudo A, Kurokawa T, Yoneda H, Kunitsugu I, et al. Inhibitory effects of eicosapentaenoic acid on chronic cerebral vasospasm after subarachnoid hemorrhage: possible involvement of a sphingosylphosphorylcholine-rho-kinase pathway. Cerebrovasc Dis. 2008;26(1):30–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Wirrig C, Hunter I, Mathieson FA, Nixon GF. Sphingosylphosphorylcholine is a proinflammatory mediator in cerebral arteries. J Cereb Blood Flow Metab. 2011;31(1):212–21. PubMed Central PMCID: 3049485.PubMedCrossRefGoogle Scholar
  39. 39.
    Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11(6):403–15. PubMed Central PMCID: 3368251.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Salomone S, Yoshimura S, Reuter U, Foley M, Thomas SS, Moskowitz MA, et al. S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur J Pharmacol. 2003;469(1–3):125–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 2008;102(6):669–76. PubMed Central PMCID: 2659392.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med. 2010;207(1):17–27. PubMed Central PMCID: 2812554.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Graeler M, Goetzl EJ. Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells. FASEB J. 2002;16(14):1874–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Lai WQ, Wong WS, Leung BP. Sphingosine kinase and sphingosine 1-phosphate in asthma. Biosci Rep. 2011;31(2):145–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S. The roles of sphingosine-1-phosphate in asthma. Mol Immunol. 2002;38(16–18):1239–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Terai K, Soga T, Takahashi M, Kamohara M, Ohno K, Yatsugi S, et al. Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience. 2003;116(4):1053–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci. 2005;25(6):1459–69.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, et al. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell. 2001;8(3):693–704.PubMedCrossRefGoogle Scholar
  49. 49.
    Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, et al. Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res. 2002;90(3):325–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Sugimoto N, Takuwa N, Okamoto H, Sakurada S, Takuwa Y. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol Cell Biol. 2003;23(5):1534–45. PubMed Central PMCID: 151702.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 2009;325(5945):1254–7. PubMed Central PMCID: 2850596.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 2010;465(7301):1084–8. PubMed Central PMCID: 2946785.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest. 2000;106(8):951–61. PubMed Central PMCID: 314347.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood. 2003;102(10):3665–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol. 2005;25(24):11113–21. PubMed Central PMCID: 1316977.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest. 2009;119(7):1871–9. PubMed Central PMCID: 2701879.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem. 2004;279(28):29367–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Ishii I, Ye X, Friedman B, Kawamura S, Contos JJ, Kingsbury MA, et al. Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. J Biol Chem. 2002;277(28):25152–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Ishii I, Friedman B, Ye X, Kawamura S, McGiffert C, Contos JJ, et al. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem. 2001;276(36):33697–704.PubMedCrossRefGoogle Scholar
  60. 60.
    MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, et al. An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci. 2001;14(2):203–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Herr DR, Grillet N, Schwander M, Rivera R, Muller U, Chun J. Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci. 2007;27(6):1474–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Kono M, Belyantseva IA, Skoura A, Frolenkov GI, Starost MF, Dreier JL, et al. Deafness and stria vascularis defects in S1P2 receptor-null mice. J Biol Chem. 2007;282(14):10690–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest. 2007;117(9):2506–16. PubMed Central PMCID: 1940238.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Du W, Takuwa N, Yoshioka K, Okamoto Y, Gonda K, Sugihara K, et al. S1P(2), the G protein-coupled receptor for sphingosine-1-phosphate, negatively regulates tumor angiogenesis and tumor growth in vivo in mice. Cancer Res. 2010;70(2):772–81.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang F, Okamoto Y, Inoki I, Yoshioka K, Du W, Qi X, et al. Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J Clin Invest. 2010;120(11):3979–95. PubMed Central PMCID: 2964972.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Skoura A, Michaud J, Im DS, Thangada S, Xiong Y, Smith JD, et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(1):81–5. PubMed Central PMCID: 3013369.PubMedCrossRefGoogle Scholar
  67. 67.
    Kim GS, Yang L, Zhang G, Zhao H, Selim M, McCullough LD, et al. Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat Commun. 2015;6:7893. PubMed Central PMCID: PMC4587559.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Michaud J, Im DS, Hla T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol. 2010;184(3):1475–83. PubMed Central PMCID: 3068864.PubMedCrossRefGoogle Scholar
  69. 69.
    Levkau B, Hermann S, Theilmeier G, van der Giet M, Chun J, Schober O, et al. High-density lipoprotein stimulates myocardial perfusion in vivo. Circulation. 2004;110(21):3355–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation. 2006;114(13):1403–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Means CK, Xiao CY, Li Z, Zhang T, Omens JH, Ishii I, et al. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2007;292(6):H2944–51.PubMedCrossRefGoogle Scholar
  72. 72.
    Takuwa N, Ohkura S, Takashima S, Ohtani K, Okamoto Y, Tanaka T, et al. S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species. Cardiovasc Res. 2010;85(3):484–93. PubMed Central PMCID: 2802201.PubMedCrossRefGoogle Scholar
  73. 73.
    Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, Urbich C, et al. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol. 2007;27(2):275–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol. 2007;8(12):1337–44.PubMedCrossRefGoogle Scholar
  75. 75.
    Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med. 2009;206(11):2469–81. PubMed Central PMCID: 2768857.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem. 2003;278(47):46832–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Le Stunff H, Peterson C, Liu H, Milstien S, Spiegel S. Sphingosine-1-phosphate and lipid phosphohydrolases. Biochim Biophys Acta. 2002;1582(1–3):8–17.PubMedCrossRefGoogle Scholar
  78. 78.
    Brindley DN, Pilquil C. Lipid phosphate phosphatases and signaling. J Lipid Res. 2009;50(Suppl):S225–30. PubMed Central PMCID: 2674702.PubMedPubMedCentralGoogle Scholar
  79. 79.
    WHO. Neurological disorders: public health challenges
  80. 80.
    Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.PubMedCrossRefGoogle Scholar
  81. 81.
    Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375(9727):1695–703.PubMedCrossRefGoogle Scholar
  82. 82.
    Donnan GA, Davis SM, Parsons MW, Ma H, Dewey HM, Howells DW. How to make better use of thrombolytic therapy in acute ischemic stroke. Nat Rev Neurol. 2011;7(7):400–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Seifert HA, Pennypacker KR. Molecular and cellular immune responses to ischemic brain injury. Transl Stroke Res. 2014;5(5):543–53. PubMed Central PMCID: 4125453.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shichita T, Sakaguchi R, Suzuki M, Yoshimura A. Post-ischemic inflammation in the brain. Front Immunol. 2012;3:132. PubMed Central PMCID: 3400935.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A. Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res. 2014;5(4):442–53. PubMed Central PMCID: 4112106.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808. PubMed Central PMCID: 3137275.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fu Y, Liu Q, Anrather J, Shi FD. Immune interventions in stroke. Nat Rev Neurol. 2015;11(9):524–35.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gan Y, Liu Q, Wu W, Yin JX, Bai XF, Shen R, et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci U S A. 2014;111(7):2704–9. PubMed Central PMCID: 3932858.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol. 2013;74(3):458–71. PubMed Central PMCID: 3748165.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Monson NL, Ortega SB, Ireland SJ, Meeuwissen AJ, Chen D, Plautz EJ, et al. Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke. J Neuroinflammation. 2014;11:22. PubMed Central PMCID: 3926678.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice. Metab Brain Dis. 2014;29(1):59–73. PubMed Central PMCID: 3944055.PubMedCrossRefGoogle Scholar
  93. 93.
    Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H. IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis. 2013;28(3):375–86. PubMed Central PMCID: 3737266.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T, Neumann-Haefelin T, et al. The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun. 2009;389(2):251–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 2010;41(2):368–74. PubMed Central PMCID: 2811754.PubMedCrossRefGoogle Scholar
  96. 96.
    Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol. 2011;69(1):119–29. PubMed Central PMCID: 3200194.PubMedCrossRefGoogle Scholar
  97. 97.
    Pfeilschifter W, Czech-Zechmeister B, Sujak M, Mirceska A, Koch A, Rami A, et al. Activation of sphingosine kinase 2 is an endogenous protective mechanism in cerebral ischemia. Biochem Biophys Res Commun. 2011;413(2):212–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Choi JW, Chun J. Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta. 2013;1831(1):20–32. PubMed Central PMCID: 3693945.PubMedCrossRefGoogle Scholar
  99. 99.
    Liu J, Zhang C, Tao W, Liu M. Systematic review and meta-analysis of the efficacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 (fingolimod) in animal models of stroke. Int J Neurosci. 2013;123(3):163–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Thielmann I, et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke. 2013;44(11):3202–10.PubMedCrossRefGoogle Scholar
  101. 101.
    Hasegawa Y, Suzuki H, Altay O, Rolland W, Zhang JH. Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats. Transl Stroke Res. 2013;4(5):524–32. PubMed Central PMCID: 3811943.PubMedCrossRefGoogle Scholar
  102. 102.
    Fu Y, Zhang N, Ren L, Yan Y, Sun N, Li YJ, et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc Natl Acad Sci U S A. 2014;111(51):18315–20. PubMed Central PMCID: 4280578.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lin JJ, Chang T, Cai WK, Zhang Z, Yang YX, Sun C, et al. Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: in vivo and in vitro studies. Neurochem Int. 2015;89:92–100.PubMedCrossRefGoogle Scholar
  104. 104.
    Zheng S, Wei S, Wang X, Xu Y, Xiao Y, Liu H, et al. Sphingosine kinase 1 mediates neuroinflammation following cerebral ischemia. Exp Neurol. 2015;272:160–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Campos F, Qin T, Castillo J, Seo JH, Arai K, Lo EH, et al. Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model. Stroke. 2013;44(2):505–11. PubMed Central PMCID: PMC3586809.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Herr I, Martin-Villalba A, Kurz E, Roncaioli P, Schenkel J, Cifone MG, et al. FK506 prevents stroke-induced generation of ceramide and apoptosis signaling. Brain Res. 1999;826(2):210–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Hisaki H, Okazaki T, Kubota M, Nakane M, Fujimaki T, Nakayama H, et al. L-PDMP improves glucosylceramide synthesis and behavior in rats with focal ischemia. Neurol Res. 2008;30(9):979–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Noda H, Takeuchi H, Mizuno T, Suzumura A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol. 2013;256(1–2):13–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Liesz A, Sun L, Zhou W, Schwarting S, Mracsko E, Zorn M, et al. FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS ONE. 2011;6(6):e21312. PubMed Central PMCID: 3119049.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zhang J, Yang Y, Sun H, Xing Y. Hemorrhagic transformation after cerebral infarction: current concepts and challenges. Ann Transl Med. 2014;2(8):81. PubMed Central PMCID: 4200641.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Luitse MJ, Biessels GJ, Rutten GE, Kappelle LJ. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol. 2012;11(3):261–71.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, et al. Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: a pilot trial. Circulation. 2015;132(12):1104–12. PubMed Central PMCID: PMC4580515.PubMedCrossRefGoogle Scholar
  113. 113.
    Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol. 2004;56(4):468–77.PubMedCrossRefGoogle Scholar
  114. 114.
    Caplan LR. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1999;341(16):1240–1.PubMedCrossRefGoogle Scholar
  115. 115.
    Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke. 1997;28(11):2109–18.Google Scholar
  116. 116.
    Cai A, Schlunk F, Bohmann F, Kashefiolasl S, Brunkhorst R, Foerch C, et al. Coadministration of FTY720 and rt-PA in an experimental model of large hemispheric stroke—no influence on functional outcome and blood-brain barrier disruption. Exp Transl Stroke Med. 2013;5(1):11. PubMed Central PMCID: 4029477.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31. PubMed Central PMCID: Pmc3884550, Epub 2012/06/16. eng.PubMedCrossRefGoogle Scholar
  118. 118.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44. Epub 2009/05/12. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMedCrossRefGoogle Scholar
  120. 120.
    Pandey AS, Xi G. Intracerebral hemorrhage: a multimodality approach to improving outcome. Transl Stroke Res. 2014;5(3):313–5.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Xiong XY, Yang QW. Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl Stroke Res. 2015;6(5):339–41.PubMedCrossRefGoogle Scholar
  122. 122.
    Schlunk F, Greenberg SM. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl Stroke Res. 2015;6(4):257–63.PubMedCrossRefGoogle Scholar
  123. 123.
    van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.PubMedCrossRefGoogle Scholar
  124. 124.
    Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908. Epub 2006/10/13. eng.PubMedGoogle Scholar
  125. 125.
    Selim M, Sheth KN. Perihematoma edema: a potential translational target in intracerebral hemorrhage? Transl Stroke Res. 2015;6(2):104–6. PubMed Central PMCID: 4359064.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44.PubMedCrossRefGoogle Scholar
  127. 127.
    Qureshi AI, Ali Z, Suri MF, Shuaib A, Baker G, Todd K, et al. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit Care Med. 2003;31(5):1482–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Lusardi TA, Wolf JA, Putt ME, Smith DH, Meaney DF. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J Neurotrauma. 2004;21(1):61–72.PubMedCrossRefGoogle Scholar
  129. 129.
    Graham DI, McIntosh TK, Maxwell WL, Nicoll JA. Recent advances in neurotrauma. J Neuropathol Exp Neurol. 2000;59(8):641–51.PubMedCrossRefGoogle Scholar
  130. 130.
    Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42(6):1781–6. PubMed Central PMCID: PMC3123894.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Felberg RA, Grotta JC, Shirzadi AL, Strong R, Narayana P, Hill-Felberg SJ, et al. Cell death in experimental intracerebral hemorrhage: the “black hole” model of hemorrhagic damage. Ann Neurol. 2002;51(4):517–24.PubMedCrossRefGoogle Scholar
  132. 132.
    Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287–93.PubMedCrossRefGoogle Scholar
  133. 133.
    Ziai WC. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke. 2013;44(6 Suppl 1):S74–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Gebel Jr JM, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, et al. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002;33(11):2631–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Butcher KS, Baird T, MacGregor L, Desmond P, Tress B, Davis S. Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke. 2004;35(8):1879–85.PubMedCrossRefGoogle Scholar
  136. 136.
    Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res. 2013;4(5):546–53. PubMed Central PMCID: 3810989.PubMedCrossRefGoogle Scholar
  137. 137.
    Zheng M, Du H, Ni W, Koch LG, Britton SL, Keep RF, et al. Iron-induced necrotic brain cell death in rats with different aerobic capacity. Transl Stroke Res. 2015;6(3):215–23. PubMed Central PMCID: 4425582.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y. Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res. 2014;5(4):472–5. PubMed Central PMCID: 3962522.PubMedCrossRefGoogle Scholar
  139. 139.
    Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258–64.PubMedCrossRefGoogle Scholar
  140. 140.
    Kitaoka T, Hua Y, Xi G, Hoff JT, Keep RF. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage. Stroke. 2002;33(12):3012–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH. Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke. 2009;40(4):1530–2. PubMed Central PMCID: 2743552, Epub 2009/02/21. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Finigan JH, Dudek SM, Singleton PA, Chiang ET, Jacobson JR, Camp SM, et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem. 2005;280(17):17286–93.PubMedCrossRefGoogle Scholar
  143. 143.
    Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 2005;105(8):3178–84.PubMedCrossRefGoogle Scholar
  144. 144.
    Bae JS, Yang L, Manithody C, Rezaie AR. The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood. 2007;110(12):3909–16. PubMed Central PMCID: 2190610.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Bae JS, Yang L, Rezaie AR. Lipid raft localization regulates the cleavage specificity of protease activated receptor 1 in endothelial cells. J Thromb Haemost. 2008;6(6):954–61.PubMedCrossRefGoogle Scholar
  146. 146.
    Feistritzer C, Schuepbach RA, Mosnier LO, Bush LA, Di Cera E, Griffin JH, et al. Protective signaling by activated protein C is mechanistically linked to protein C activation on endothelial cells. J Biol Chem. 2006;281(29):20077–84.PubMedCrossRefGoogle Scholar
  147. 147.
    Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77. PubMed Central PMCID: 2991407.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6(6):407–9. PubMed Central PMCID: 4628553.PubMedCrossRefGoogle Scholar
  149. 149.
    Chen S, Yang Q, Chen G, Zhang JH. An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res. 2015;6(1):4–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Hammond MD, Ambler WG, Ai Y, Sansing LH. Alpha4 integrin is a regulator of leukocyte recruitment after experimental intracerebral hemorrhage. Stroke. 2014;45(8):2485–7. PubMed Central PMCID: 4129460.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, et al. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci. 2014;34(11):3901–9. PubMed Central PMCID: 3951693.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Graeber MB. Changing face of microglia. Science. 2010;330(6005):783–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Taylor RA, Sansing LH. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol. 2013;2013:746068. PubMed Central PMCID: 3810327.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol. 2011;11(10):658–71. PubMed Central PMCID: 3620656.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery. 2006;58(3):542–50. discussion -50.PubMedCrossRefGoogle Scholar
  156. 156.
    Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol. 2013;241:45–55. PubMed Central PMCID: 3570752.PubMedCrossRefGoogle Scholar
  157. 157.
    Lu L, Barfejani AH, Qin T, Dong Q, Ayata C, Waeber C. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage. Brain Res. 2014;1555:89–96.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Rolland 2nd WB, Manaenko A, Lekic T, Hasegawa Y, Ostrowski R, Tang J, et al. FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir Suppl. 2011;111:213–7. PubMed Central PMCID: 3569072.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71:1092–101.PubMedCrossRefGoogle Scholar
  160. 160.
    Gaberel T, Magheru C, Emery E. Management of non-traumatic intraventricular hemorrhage. Neurosurg Rev. 2012;35(4):485–94. discussion 94-5.PubMedCrossRefGoogle Scholar
  161. 161.
    Bhattathiri PS, Gregson B, Prasad KS, Mendelow AD, Investigators S. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial. Acta Neurochir Suppl. 2006;96:65–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Nieuwkamp DJ, de Gans K, Rinkel GJ, Algra A. Treatment and outcome of severe intraventricular extension in patients with subarachnoid or intracerebral hemorrhage: a systematic review of the literature. J Neurol. 2000;247(2):117–21.PubMedCrossRefGoogle Scholar
  163. 163.
    Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res. 2012;3 Suppl 1:25–38. PubMed Central PMCID: 3750748.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18. Epub 2007/01/30. eng.PubMedCrossRefGoogle Scholar
  165. 165.
    Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432–46. PubMed Central PMCID: 3719879.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Brilstra EH, Rinkel GJ, Algra A, van Gijn J. Rebleeding, secondary ischemia, and timing of operation in patients with subarachnoid hemorrhage. Neurology. 2000;55(11):1656–60.PubMedCrossRefGoogle Scholar
  167. 167.
    Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10(1):44–58.PubMedCrossRefGoogle Scholar
  168. 168.
    Solenski NJ, Haley Jr EC, Kassell NF, Kongable G, Germanson T, Truskowski L, et al. Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the Multicenter Cooperative Aneurysm Study. Crit Care Med. 1995;23(6):1007–17.PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang JH. Vascular neural network in subarachnoid hemorrhage. Transl Stroke Res. 2014;5(4):423–8. PubMed Central PMCID: 4127639.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Song J, Li P, Chaudhary N, Gemmete JJ, Thompson BG, Xi G, et al. Correlating cerebral (18)FDG PET-CT patterns with histological analysis during early brain injury in a rat subarachnoid hemorrhage model. Transl Stroke Res. 2015;6(4):290–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41(10):2391–5.PubMedCrossRefGoogle Scholar
  172. 172.
    Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. 2013;9(3):152–63.PubMedCrossRefGoogle Scholar
  173. 173.
    Dhar R, Scalfani MT, Blackburn S, Zazulia AR, Videen T, Diringer M. Relationship between angiographic vasospasm and regional hypoperfusion in aneurysmal subarachnoid hemorrhage. Stroke. 2012;43(7):1788–94. PubMed Central PMCID: 3383942.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38(3):981–6.PubMedCrossRefGoogle Scholar
  175. 175.
    Testai FD, Hillmann M, Amin-Hanjani S, Gorshkova I, Berdyshev E, Gorelick PB, et al. Changes in the cerebrospinal fluid ceramide profile after subarachnoid hemorrhage. Stroke. 2012;43(8):2066–70.PubMedCrossRefGoogle Scholar
  176. 176.
    Tosaka M, Okajima F, Hashiba Y, Saito N, Nagano T, Watanabe T, et al. Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: possible role in pathogenesis of cerebral vasospasm. Stroke. 2001;32(12):2913–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Testai FD, Xu HL, Kilkus J, Suryadevara V, Gorshkova I, Berdyshev E, et al. Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. J Neurosci Res. 2015;93(5):796–805. PubMed Central PMCID: 4359096.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Yagi K, Lidington D, Wan H, Fares JC, Meissner A, Sumiyoshi M, et al. Therapeutically targeting tumor necrosis factor-alpha/sphingosine-1-phosphate signaling corrects myogenic reactivity in subarachnoid hemorrhage. Stroke. 2015;46(8):2260–70.PubMedCrossRefGoogle Scholar
  179. 179.
    Tang H, Zhao D, Chen S, Fang M, Wang F, Cui Y, et al. Expression of sphingosine-1-phosphate (S1P) on the cerebral vasospasm after subarachnoid hemorrhage in rabbits. Acta cirurgica brasileira/Sociedade Brasileira para Desenvolvimento Pesquisa em Cirurgia. 2015;30(10):654–9.PubMedGoogle Scholar
  180. 180.
    Salomone S, Soydan G, Ip PC, Hopson KM, Waeber C. Vessel-specific role of sphingosine kinase 1 in the vasoconstriction of isolated basilar arteries. Pharmacol Res. 2010;62(6):465–74. PubMed Central PMCID: 2974794.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, et al. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol. 2014;114:58–83. PubMed Central PMCID: 3937258.PubMedCrossRefGoogle Scholar
  182. 182.
    Keep RF, Wang MM, Xiang J, Hua Y, Xi G. Full steam ahead with remote ischemic conditioning for stroke. Transl Stroke Res. 2014;5:535–7.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Xi G. Clinical translation of cerebral preconditioning. Transl Stroke Res. 2010;1(1):2–3. PubMed PMID: 25053258. Pubmed Central PMCID: 4187220.PubMedCrossRefGoogle Scholar
  184. 184.
    Sheng R, Zhang TT, Felice VD, Qin T, Qin ZH, Smith CD, et al. Preconditioning stimuli induce autophagy via sphingosine kinase 2 in mouse cortical neurons. J Biol Chem. 2014;289(30):20845–57. PubMed Central PMCID: 4110292.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Wacker BK, Perfater JL, Gidday JM. Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. J Neurochem. 2012;123(6):954–62. PubMed Central PMCID: 3514614.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Zhou Y, Lekic T, Fathali N, Ostrowski RP, Martin RD, Tang J, et al. Isoflurane posttreatment reduces neonatal hypoxic-ischemic brain injury in rats by the sphingosine-1-phosphate/phosphatidylinositol-3-kinase/Akt pathway. Stroke. 2010;41(7):1521–7. PubMed Central PMCID: 2917259.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Altay O, Hasegawa Y, Sherchan P, Suzuki H, Khatibi NH, Tang J, et al. Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice. Crit Care Med. 2012;40(6):1908–13. PubMed Central PMCID: 3358576.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Furuya K, Ginis I, Takeda H, Chen Y, Hallenbeck JM. Cell permeable exogenous ceramide reduces infarct size in spontaneously hypertensive rats supporting in vitro studies that have implicated ceramide in induction of tolerance to ischemia. J Cereb Blood Flow Metab. 2001;21(3):226–32.PubMedCrossRefGoogle Scholar
  189. 189.
    Wacker BK, Freie AB, Perfater JL, Gidday JM. Junctional protein regulation by sphingosine kinase 2 contributes to blood-brain barrier protection in hypoxic preconditioning-induced cerebral ischemic tolerance. J Cereb Blood Flow Metab. 2012;32(6):1014–23. PubMed Central PMCID: 3367228.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Wacker BK, Park TS, Gidday JM. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke. 2009;40(10):3342–8. PubMed Central PMCID: PMC2753710.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Yung LM, Wei Y, Qin T, Wang Y, Smith CD, Waeber C. Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke. 2012;43(1):199–204. PubMed Central PMCID: 3246529.PubMedCrossRefGoogle Scholar
  192. 192.
    Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, et al. Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke. 2012;43(9):2513–6. PubMed Central PMCID: 3429639.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, et al. Neuroprotective gases—fantasy or reality for clinical use? Prog Neurobiol. 2014;115:210–45.PubMedCrossRefGoogle Scholar
  194. 194.
    Iwai M, Sato K, Omori N, Nagano I, Manabe Y, Shoji M, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J Cereb Blood Flow Metab. 2002;22(4):411–9.PubMedCrossRefGoogle Scholar
  195. 195.
    Kimura A, Ohmori T, Kashiwakura Y, Ohkawa R, Madoiwa S, Mimuro J, et al. Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke. 2008;39(12):3411–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Harada J, Foley M, Moskowitz MA, Waeber C. Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem. 2004;88(4):1026–39.PubMedCrossRefGoogle Scholar
  197. 197.
    Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47. PubMed Central PMCID: 2787735.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Yamagata K, Tagami M, Torii Y, Takenaga F, Tsumagari S, Itoh S, et al. Sphingosine 1-phosphate induces the production of glial cell line-derived neurotrophic factor and cellular proliferation in astrocytes. Glia. 2003;41(2):199–206.PubMedCrossRefGoogle Scholar
  199. 199.
    Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MC, Vogt KE, et al. Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci U S A. 2012;109(35):14230–5. PubMed Central PMCID: 3435172.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Fukumoto K, Mizoguchi H, Takeuchi H, Horiuchi H, Kawanokuchi J, Jin S, et al. Fingolimod increases brain-derived neurotrophic factor levels and ameliorates amyloid beta-induced memory impairment. Behav Brain Res. 2014;268:88–93.PubMedCrossRefGoogle Scholar
  201. 201.
    Doi Y, Takeuchi H, Horiuchi H, Hanyu T, Kawanokuchi J, Jin S, et al. Fingolimod phosphate attenuates oligomeric amyloid beta-induced neurotoxicity via increased brain-derived neurotrophic factor expression in neurons. PLoS ONE. 2013;8(4):e61988. PubMed Central PMCID: 3625222.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Lapchak PA, Zhang JH, Noble-Haeusslein LJ. RIGOR guidelines: escalating STAIR and STEPS for effective translational research. Transl Stroke Res. 2013;4(3):279–85. PubMed Central PMCID: PMC3644408.PubMedCrossRefGoogle Scholar
  203. 203.
    Wang MM, Xi G, Keep RF. Should the STAIR criteria be modified for preconditioning studies? Transl Stroke Res. 2013;4(1):3–14. PubMed Central PMCID: PMC3580874.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of MichiganAnn ArborUSA
  2. 2.Department of NeurologyTianjin Medical University General HospitalTianjinChina

Personalised recommendations