Advertisement

Translational Stroke Research

, Volume 8, Issue 1, pp 33–46 | Cite as

Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke

  • Jessica M. Cassidy
  • Steven C. CramerEmail author
SI: Present and future of neuroplasticity in CNS recovery

Abstract

With increasing rates of survival throughout the past several years, stroke remains one of the leading causes of adult disability. Following the onset of stroke, spontaneous mechanisms of recovery at the cellular, molecular, and systems levels ensue. The degree of spontaneous recovery is generally incomplete and variable among individuals. Typically, the best recovery outcomes entail the restitution of function in injured but surviving neural matter. An assortment of restorative therapies exists or is under development with the goal of potentiating restitution of function in damaged areas or in nearby ipsilesional regions by fostering neuroplastic changes, which often rely on mechanisms similar to those observed during spontaneous recovery. Advancements in stroke rehabilitation depend on the elucidation of both spontaneous and therapeutic-driven mechanisms of recovery. Further, the implementation of neural biomarkers in research and clinical settings will enable a multimodal approach to probing brain state and predicting the extent of post-stroke functional recovery. This review will discuss spontaneous and therapeutic-induced mechanisms driving post-stroke functional recovery while underscoring several potential restorative therapies and biomarkers.

Keywords

Stroke Neuroimaging Plasticity Biomarker Rehabilitation Repair 

Notes

Acknowledgments

This work received support from the NIH (K24HD074722 and T32AR047752).

Compliance with Ethical Standards

Conflict of Interest

Dr. Cassidy has no conflicts of interest. Dr. Cramer served as a consultant for Dart Neuroscience, RAND Corporation, Dart Neuroscience, and MicroTransponder.

References

  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–e292. doi: 10.1161/01.cir.0000441139.02102.80.PubMedCrossRefGoogle Scholar
  2. 2.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCrossRefGoogle Scholar
  3. 3.
    Rathore SS, Hinn AR, Cooper LS, Tyroler HA, Rosamond WD. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke. 2002;33(11):2718–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6. doi: 10.1161/01.str.0000087172.16305.cd.PubMedCrossRefGoogle Scholar
  5. 5.
    Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J Stroke. 2013;8(1):25–32. doi: 10.1111/j.1747-4949.2012.00967.x.PubMedCrossRefGoogle Scholar
  6. 6.
    Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.PubMedCrossRefGoogle Scholar
  7. 7.
    Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Hier DB, Mondlock J, Caplan LR. Recovery of behavioral abnormalities after right hemisphere stroke. Neurology. 1983;33(3):345–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Cassidy TP, Lewis S, Gray CS. Recovery from visuospatial neglect in stroke patients. J Neurol Neurosurg Psychiatry. 1998;64(4):555–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Impaired orientation in acute stroke: frequency, determinants, and time-course of recovery. The Copenhagen Stroke Study. Cerebrovasc Dis. 1998;8(2):90–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Desmond DW, Moroney JT, Sano M, Stern Y. Recovery of cognitive function after stroke. Stroke. 1996;27(10):1798–803.PubMedCrossRefGoogle Scholar
  12. 12.
    Wade DT, Parker V, Langton HR. Memory disturbance after stroke: frequency and associated losses. Int Rehabil Med. 1986;8(2):60–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Kertesz A, McCabe P. Recovery patterns and prognosis in aphasia. Brain. 1977;100(Pt 1):1–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol. 1995;38(4):659–66. doi: 10.1002/ana.410380416.PubMedCrossRefGoogle Scholar
  15. 15.
    Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci. 2006;9(6):735–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Cramer SC, Procaccio V. Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies. Eur J Neurol. 2012;19(5):718–24. doi: 10.1111/j.1468-1331.2011.03615.x.PubMedCrossRefGoogle Scholar
  17. 17.
    Helm EE, Tyrell CM, Pohlig RT, Brady LD, Reisman DS. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke. Exp Brain Res. 2015. doi: 10.1007/s00221-015-4465-8.PubMedGoogle Scholar
  18. 18.
    Chang EY, Chang EH, Cragg S, Cramer SC. Predictors of gains during inpatient rehabilitation in patients with stroke—a review. Crit Rev Phys Rehabil Med. 2013;25(3-4):203–21. doi: 10.1615/CritRevPhysRehabilMed.2013008120.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hillis AE, Barker PB, Wityk RJ, Aldrich EM, Restrepo L, Breese EL, et al. Variability in subcortical aphasia is due to variable sites of cortical hypoperfusion. Brain Lang. 2004;89(3):524–30. doi: 10.1016/j.bandl.2004.01.007.PubMedCrossRefGoogle Scholar
  20. 20.
    Lindenberg R, Renga V, Zhu LL, Betzler F, Alsop D, Schlaug G. Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology. 2010;74(4):280–7. doi: 10.1212/WNL.0b013e3181ccc6d9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhu LL, Lindenberg R, Alexander MP, Schlaug G. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke. Stroke; J Cerebral Circ. 2010;41(5):910–5. doi: 10.1161/STROKEAHA.109.577023.CrossRefGoogle Scholar
  22. 22.
    Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, et al. Anatomy of stroke injury predicts gains from therapy. Stroke. 2011;42(2):421–6. doi: 10.1161/strokeaha.110.599340.PubMedCrossRefGoogle Scholar
  23. 23.
    Cramer SC. Repairing the human brain after stroke. II. Restorative therapies. Ann Neurol. 2008;63(5):549–60. doi: 10.1002/ana.21412.PubMedCrossRefGoogle Scholar
  24. 24.
    Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.PubMedCrossRefGoogle Scholar
  25. 25.
    Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke. 1981;12(6):723–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(Pt 6):1591–609. doi: 10.1093/brain/awr039.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Overman JJ, Carmichael ST. Plasticity in the injured brain: more than molecules matter. Neuroscientist. 2014;20(1):15–28. doi: 10.1177/1073858413491146.PubMedCrossRefGoogle Scholar
  28. 28.
    Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42. doi: 10.1002/ana.20845.PubMedCrossRefGoogle Scholar
  29. 29.
    Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res. 1996;733(1):142–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Jones TA, Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 1992;581(1):156–60.PubMedCrossRefGoogle Scholar
  32. 32.
    Zhang RL, Zhang ZG, Chopp M. Ischemic stroke and neurogenesis in the subventricular zone. Neuropharmacology. 2008;55(3):345–52. doi: 10.1016/j.neuropharm.2008.05.027.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ding G, Jiang Q, Li L, Zhang L, Zhang ZG, Ledbetter KA, et al. Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats. J Cereb Blood Flow Metab. 2008;28(8):1440–8. doi: 10.1038/jcbfm.2008.33.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Seevinck PR, Deddens LH, Dijkhuizen RM. Magnetic resonance imaging of brain angiogenesis after stroke. Angiogenesis. 2010;13(2):101–11. doi: 10.1007/s10456-010-9174-0.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, et al. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71. doi: 10.1038/sj.jcbfm.9600573.PubMedCrossRefGoogle Scholar
  36. 36.
    Li S, Carmichael ST. Growth-associated gene and protein expression in the region of axonal sprouting in the aged brain after stroke. Neurobiol Dis. 2006;23(2):362–73. doi: 10.1016/j.nbd.2006.03.011.PubMedCrossRefGoogle Scholar
  37. 37.
    Redecker C, Wang W, Fritschy JM, Witte OW. Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab. 2002;22(12):1463–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Que M, Schiene K, Witte OW, Zilles K. Widespread up-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain. Neurosci Lett. 1999;273(2):77–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25(44):10167–79. doi: 10.1523/jneurosci.3256-05.2005.PubMedCrossRefGoogle Scholar
  40. 40.
    Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol. 2014;252:47–56. doi: 10.1016/j.expneurol.2013.11.019.PubMedCrossRefGoogle Scholar
  41. 41.
    Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci. 2006;26(22):6096–102. doi: 10.1523/jneurosci.4564-05.2006.PubMedCrossRefGoogle Scholar
  42. 42.
    Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A. 2002;99(22):14518–23. doi: 10.1073/pnas.222536799.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bradnam LV, Stinear CM, Barber PA, Byblow WD. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex. 2012;22(11):2662–71. doi: 10.1093/cercor/bhr344.PubMedCrossRefGoogle Scholar
  44. 44.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. 2003;126(Pt 11):2476–96. doi: 10.1093/brain/awg245.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Feeney DM, Baron JC. Diaschisis. Stroke. 1986;17(5):817–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW. Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke. 1996;27(6):1105–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Carmichael ST, Tatsukawa K, Katsman D, Tsuyuguchi N, Kornblum HI. Evolution of diaschisis in a focal stroke model. Stroke. 2004;35(3):758–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C] PK11195. Neurology. 2000;55(7):1052–4.PubMedCrossRefGoogle Scholar
  49. 49.
    Schaechter JD, Moore CI, Connell BD, Rosen BR, Dijkhuizen RM. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain. 2006;129(Pt 10):2722–33. doi: 10.1093/brain/awl214.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang J, Meng L, Qin W, Liu N, Shi FD, Yu C. Structural damage and functional reorganization in ipsilesional m1 in well-recovered patients with subcortical stroke. Stroke. 2014;45(3):788–93. doi: 10.1161/strokeaha.113.003425.PubMedCrossRefGoogle Scholar
  51. 51.
    Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG. Reorganization of the human ipsilesional premotor cortex after stroke. Brain. 2004;127(Pt 4):747–58. doi: 10.1093/brain/awh082.PubMedCrossRefGoogle Scholar
  52. 52.
    Favre I, Zeffiro TA, Detante O, Krainik A, Hommel M, Jaillard A. Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis. Stroke. 2014;45(4):1077–83. doi: 10.1161/strokeaha.113.003168.PubMedCrossRefGoogle Scholar
  53. 53.
    Heiss WD, Thiel A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 2006;98(1):118–23. doi: 10.1016/j.bandl.2006.02.002.PubMedCrossRefGoogle Scholar
  54. 54.
    Warburton E, Price CJ, Swinburn K, Wise RJ. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry. 1999;66(2):155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci. 2005;8(11):1603–10. doi: 10.1038/nn1574.PubMedCrossRefGoogle Scholar
  56. 56.
    Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol. 2006;117(8):1641–59. doi: 10.1016/j.clinph.2006.01.016.PubMedCrossRefGoogle Scholar
  58. 58.
    Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(Pt 1):170–80.PubMedGoogle Scholar
  59. 59.
    van Kuijk AA, Anker LC, Pasman JW, Hendriks J, van Elswijk G, Geurts ACH. Stimulus–response characteristics of motor evoked potentials and silent periods in proximal and distal upper-extremity muscles. J Electromyogr Kinesiol. 2009;19(4):574–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Pennisi G, Alagona G, Rapisarda G, Nicoletti F, Costanzo E, Ferri R, et al. Transcranial magnetic stimulation after pure motor stroke. Clin Neurophysiol. 2002;113(10):1536–43.PubMedCrossRefGoogle Scholar
  61. 61.
    Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke; J Cerebral Circ. 1998;29(9):1854–9.CrossRefGoogle Scholar
  62. 62.
    Traversa R, Cicinelli P, Oliveri M, Giuseppina Palmieri M, Filippi MM, Pasqualetti P, et al. Neurophysiological follow-up of motor cortical output in stroke patients. Clin Neurophysiol. 2000;111(9):1695–703. doi: 10.1016/S1388-2457(00)00373-4.PubMedCrossRefGoogle Scholar
  63. 63.
    Cicinelli P, Traversa R, Rossini PM. Post-stroke reorganization of brain motor output to the hand: a 2–4 month follow-up with focal magnetic transcranial stimulation. Electroencephalogr Clin Neurophysiol. 1997;105(6):438–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Traversa R, Cicinelli P, Bassi A, Rossini PM, Bernardi G. Mapping of motor cortical reorganization after stroke a brain stimulation study with focal magnetic pulses. Stroke. 1997;28(1):110–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Netz J, Lammers T, Homberg V. Reorganization of motor output in the non-affected hemisphere after stroke. Brain: J Neurol. 1997;120(Pt 9):1579–86.CrossRefGoogle Scholar
  66. 66.
    Manganotti P, Patuzzo S, Cortese F, Palermo A, Smania N, Fiaschi A. Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clin Neurophysiol. 2002;113(6):936–43.PubMedCrossRefGoogle Scholar
  67. 67.
    Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL. Motor outcome after subcortical stroke: MEPs correlate with hand strength but not dexterity. Clin Neurophysiol. 2002;113(12):2025–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke. 1997;28(12):2518–27.PubMedCrossRefGoogle Scholar
  69. 69.
    Weiller C, Isensee C, Rijntjes M, Huber W, Muller S, Bier D, et al. Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol. 1995;37(6):723–32. doi: 10.1002/ana.410370605.PubMedCrossRefGoogle Scholar
  70. 70.
    Nelles G, Jentzen W, Bockisch A, Diener HC. Neural substrates of good and poor recovery after hemiplegic stroke: a serial PET study. J Neurol. 2011;258(12):2168–75. doi: 10.1007/s00415-011-6085-y.PubMedCrossRefGoogle Scholar
  71. 71.
    Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol. 2003;89(6):3205–14. doi: 10.1152/jn.01143.2002.PubMedCrossRefGoogle Scholar
  72. 72.
    Nair DG, Hutchinson S, Fregni F, Alexander M, Pascual-Leone A, Schlaug G. Imaging correlates of motor recovery from cerebral infarction and their physiological significance in well-recovered patients. Neuroimage. 2007;34(1):253–63. doi: 10.1016/j.neuroimage.2006.09.010.PubMedCrossRefGoogle Scholar
  73. 73.
    Nelles G, Spiekermann G, Jueptner M, Leonhardt G, Muller S, Gerhard H, et al. Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke. 1999;30(8):1510–6.PubMedCrossRefGoogle Scholar
  74. 74.
    van Oers CA, Vink M, van Zandvoort MJ, van der Worp HB, de Haan EH, Kappelle LJ, et al. Contribution of the left and right inferior frontal gyrus in recovery from aphasia. a functional MRI study in stroke patients with preserved hemodynamic responsiveness. Neuroimage. 2010;49(1):885–93. doi: 10.1016/j.neuroimage.2009.08.057.PubMedCrossRefGoogle Scholar
  75. 75.
    Grefkes C, Ward NS. Cortical reorganization after stroke: how much and how functional? Neuroscientist. 2014;20(1):56–70. doi: 10.1177/1073858413491147.PubMedCrossRefGoogle Scholar
  76. 76.
    Buetefisch CM. Role of the contralesional hemisphere in post-stroke recovery of upper extremity motor function. Front Neurol. 2015;6:214. doi: 10.3389/fneur.2015.00214.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J, Weiskopf N, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci. 2010;30(36):11926–37. doi: 10.1523/jneurosci.5642-09.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ackerley SJ, Stinear CM, Barber PA, Byblow WD. Combining theta burst stimulation with training after subcortical stroke. Stroke. 2010;41(7):1568–72. doi: 10.1161/strokeaha.110.583278.PubMedCrossRefGoogle Scholar
  79. 79.
    Schaechter JD, Perdue KL. Enhanced cortical activation in the contralesional hemisphere of chronic stroke patients in response to motor skill challenge. Cereb Cortex. 2008;18(3):638–47. doi: 10.1093/cercor/bhm096.PubMedCrossRefGoogle Scholar
  80. 80.
    Mohapatra S, Harrington R, Chan E, Dromerick AW, Breceda EY, Harris-Love M. Role of contralesional hemisphere in paretic arm reaching in patients with severe arm paresis due to stroke: a preliminary report. Neurosci Lett. 2016;617:52–8. doi: 10.1016/j.neulet.2016.02.004.PubMedCrossRefGoogle Scholar
  81. 81.
    Kim DY, Lim JY, Kang EK, You DS, Oh MK, Oh BM, et al. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am J Phys Med Rehabil. 2010;89(11):879–86. doi: 10.1097/PHM.0b013e3181f70aa7.PubMedCrossRefGoogle Scholar
  82. 82.
    Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage. 2010;50(1):233–42. doi: 10.1016/j.neuroimage.2009.12.029.PubMedCrossRefGoogle Scholar
  83. 83.
    Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Kokotilo KJ, Eng JJ, McKeown MJ, Boyd LA. Greater activation of secondary motor areas is related to less arm use after stroke. Neurorehabil Neural Repair. 2010;24(1):78–87. doi: 10.1177/1545968309345269.PubMedCrossRefGoogle Scholar
  85. 85.
    Calautti C, Naccarato M, Jones PS, Sharma N, Day DD, Carpenter AT, et al. The relationship between motor deficit and hemisphere activation balance after stroke: a 3T fMRI study. NeuroImage. 2007;34(1):322–31.PubMedCrossRefGoogle Scholar
  86. 86.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Irlbacher K, Brocke J, Mechow JV, Brandt SA. Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man. Clin Neurophysiol. 2007;118(2):308–16.PubMedCrossRefGoogle Scholar
  88. 88.
    Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME. The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science. 2012;335(6071):989–93.PubMedCrossRefGoogle Scholar
  89. 89.
    Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R. The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol. 2002;543(1):317–26.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453:525–46.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS. The influence of time after stroke on brain activations during a motor task. Ann Neurol. 2004;55(6):829–34. doi: 10.1002/ana.20099.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol. 1991;29(1):63–71. doi: 10.1002/ana.410290112.PubMedCrossRefGoogle Scholar
  93. 93.
    Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002;125(Pt 4):773–88.PubMedCrossRefGoogle Scholar
  94. 94.
    Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. Neuroimage. 2012;59(3):2771–82. doi: 10.1016/j.neuroimage.2011.10.023.PubMedCrossRefGoogle Scholar
  95. 95.
    Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study. Neurorehabil Neural Repair. 2006;20(3):398–405. doi: 10.1177/1545968306286322.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pundik S, McCabe JP, Hrovat K, Fredrickson AE, Tatsuoka C, Feng IJ, et al. Recovery of post stroke proximal arm function, driven by complex neuroplastic bilateral brain activation patterns and predicted by baseline motor dysfunction severity. Front Hum Neurosci. 2015;9:394. doi: 10.3389/fnhum.2015.00394.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ward NS, Newton JM, Swayne OBC, Lee L, Thompson AJ, Greenwood RJ, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain. 2006;129(3):809–19.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M. Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. NeuroImage. 2006;31(2):710–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Wei W, Bai L, Wang J, Dai R, Tong RK, Zhang Y, et al. A longitudinal study of hand motor recovery after sub-acute stroke: a study combined FMRI with diffusion tensor imaging. PLoS One. 2013;8(5):e64154. doi: 10.1371/journal.pone.0064154.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zemke AC, Heagerty PJ, Lee C, Cramer SC. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke. 2003;34(5):e23–8. doi: 10.1161/01.str.0000065827.35634.5e.PubMedCrossRefGoogle Scholar
  101. 101.
    Cramer SC, Crafton KR. Somatotopy and movement representation sites following cortical stroke. Exp Brain Res. 2006;168(1-2):25–32. doi: 10.1007/s00221-005-0082-2.PubMedCrossRefGoogle Scholar
  102. 102.
    Cramer SC, Moore CI, Finklestein SP, Rosen BR. A pilot study of somatotopic mapping after cortical infarct. Stroke. 2000;31(3):668–71.PubMedCrossRefGoogle Scholar
  103. 103.
    Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. 2002;125(Pt 12):2731–42.PubMedCrossRefGoogle Scholar
  104. 104.
    Boroojerdi B, Diefenbach K, Ferbert A. Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci. 1996;144(1):160–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Li J-Y, Lai P-H, Chen R. Transcallosal inhibition in patients with callosal infarction. J Neurophysiol. 2013;109(3):659–65.PubMedCrossRefGoogle Scholar
  106. 106.
    Murase N, Duque J, Mazzocchio R, Cohen L. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen L. Transcallosal inhibition in chronic subcortical stroke. NeuroImage. 2005;28(4):940–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Cicinelli P, Pasqualetti P, Zaccagnini M, Traversa R, Oliveri M, Rossini PM. Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study. Stroke. 2003;34(11):2653–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Butefisch CM, Wessling M, Netz J, Seitz RJ, Homberg V. Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehab Neural Repair. 2008;22(1):4–21.CrossRefGoogle Scholar
  110. 110.
    Shimizu T, Hosaki A, Hino T, Sato M, Komori T, Hirai S, et al. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain. 2002;125(8):1896–907.PubMedCrossRefGoogle Scholar
  111. 111.
    Scholz VH, Flaherty AW, Kraft E, Keltner JR, Kwong KK, Chen YI, et al. Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks. Brain Res. 2000;879(1-2):204–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Morecraft RJ, Herrick JL, Stilwell-Morecraft KS, Louie JL, Schroeder CM, Ottenbacher JG, et al. Localization of arm representation in the corona radiata and internal capsule in the non-human primate. Brain. 2002;125(Pt 1):176–98.PubMedCrossRefGoogle Scholar
  113. 113.
    Maillard L, Ishii K, Bushara K, Waldvogel D, Schulman AE, Hallett M. Mapping the basal ganglia: fMRI evidence for somatotopic representation of face, hand, and foot. Neurology. 2000;55(3):377–83.PubMedCrossRefGoogle Scholar
  114. 114.
    Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol. 1998;79(4):2119–48.PubMedGoogle Scholar
  115. 115.
    Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–9.PubMedGoogle Scholar
  116. 116.
    Dancause N, Barbay S, Frost SB, Zoubina EV, Plautz EJ, Mahnken JD, et al. Effects of small ischemic lesions in the primary motor cortex on neurophysiological organization in ventral premotor cortex. J Neurophysiol. 2006;96(6):3506–11. doi: 10.1152/jn.00792.2006.PubMedCrossRefGoogle Scholar
  117. 117.
    Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res. 2003;25(8):801–10. doi: 10.1179/016164103771953880.PubMedCrossRefGoogle Scholar
  118. 118.
    Bastings EP, Greenberg JP, Good DC. Hand motor recovery after stroke: a transcranial magnetic stimulation mapping study of motor output areas and their relation to functional status. Neurorehabil Neural Repair. 2002;16(3):275–82.PubMedCrossRefGoogle Scholar
  119. 119.
    Rossini PM, Caltagirone C, Castriota-Scanderbeg A, Cicinelli P, Del Gratta C, Demartin M, et al. Hand motor cortical area reorganization in stroke: a study with fMRI, MEG and TCS maps. Neuroreport. 1998;9(9):2141–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Delvaux V, Alagona G, Gerard P, De Pasqua V, Pennisi G, de Noordhout AM. Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clin Neurophysiol. 2003;114(7):1217–25.PubMedCrossRefGoogle Scholar
  121. 121.
    Liepert J, Bauder H, Miltner WHR, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex? a longitudinal fMRI stroke study. Brain. 2005;128(Pt 5):1122–38. doi: 10.1093/brain/awh456.PubMedCrossRefGoogle Scholar
  123. 123.
    Schaechter JD, Perdue KL, Wang R. Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage. 2008;39(3):1370–82. doi: 10.1016/j.neuroimage.2007.09.071.PubMedCrossRefGoogle Scholar
  124. 124.
    Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol. 1993;33(2):181–9. doi: 10.1002/ana.410330208.PubMedCrossRefGoogle Scholar
  125. 125.
    Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, Tardy J, et al. A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage. 2004;23(3):827–39. doi: 10.1016/j.neuroimage.2004.07.058.PubMedCrossRefGoogle Scholar
  126. 126.
    Calautti C, Leroy F, Guincestre JY, Baron JC. Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. Neuroimage. 2003;19(4):1650–4.PubMedCrossRefGoogle Scholar
  127. 127.
    Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke. 2001;32(5):1134–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Newton JM, Ward NS, Parker GJ, Deichmann R, Alexander DC, Friston KJ, et al. Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain. 2006;129(Pt 7):1844–58. doi: 10.1093/brain/awl106.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461–74. doi: 10.1002/hbm.20770.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Schulz R, Park CH, Boudrias MH, Gerloff C, Hummel FC, Ward NS. Assessing the integrity of corticospinal pathways from primary and secondary cortical motor areas after stroke. Stroke. 2012;43(8):2248–51. doi: 10.1161/strokeaha.112.662619.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Schulz R, Braass H, Liuzzi G, Hoerniss V, Lechner P, Gerloff C, et al. White matter integrity of premotor-motor connections is associated with motor output in chronic stroke patients. Neuroimage Clin. 2015;7:82–6. doi: 10.1016/j.nicl.2014.11.006.PubMedCrossRefGoogle Scholar
  132. 132.
    Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36. doi: 10.1089/brain.2011.0008.PubMedCrossRefGoogle Scholar
  133. 133.
    Corbetta M. Functional connectivity and neurological recovery. Dev Psychobiol. 2012;54(3):239–53. doi: 10.1002/dev.20507.PubMedCrossRefGoogle Scholar
  134. 134.
    Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16. doi: 10.1016/s1474-4422(13)70264-3.PubMedCrossRefGoogle Scholar
  135. 135.
    Pfurtscheller G, Stancak Jr A, Neuper C. Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr Clin Neurophysiol. 1996;98(4):281–93.PubMedCrossRefGoogle Scholar
  136. 136.
    Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365–75. doi: 10.1002/ana.21905.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Burke Quinlan E, Dodakian L, See J, McKenzie A, Le V, Wojnowicz M, et al. Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann Neurol. 2015;77(1):132–45. doi: 10.1002/ana.24309.PubMedCrossRefGoogle Scholar
  138. 138.
    Wadden KP, Woodward TS, Metzak PD, Lavigne KM, Lakhani B, Auriat AM, et al. Compensatory motor network connectivity is associated with motor sequence learning after subcortical stroke. Behav Brain Res. 2015;286:136–45. doi: 10.1016/j.bbr.2015.02.054.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Golestani AM, Tymchuk S, Demchuk A, Goodyear BG. Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair. 2013;27(2):153–63. doi: 10.1177/1545968312457827.PubMedCrossRefGoogle Scholar
  140. 140.
    Bannister LC, Crewther SG, Gavrilescu M, Carey LM. Improvement in touch sensation after stroke is associated with resting functional connectivity changes. Front Neurol. 2015;6:165. doi: 10.3389/fneur.2015.00165.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Carter AR, Patel KR, Astafiev SV, Snyder AZ, Rengachary J, Strube MJ, et al. Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair. 2012;26(1):7–19. doi: 10.1177/1545968311411054.PubMedCrossRefGoogle Scholar
  142. 142.
    Liu J, Qin W, Zhang J, Zhang X, Yu C. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke. Stroke. 2015;46(4):1045–51. doi: 10.1161/strokeaha.114.007044.PubMedCrossRefGoogle Scholar
  143. 143.
    van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA, et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci. 2010;30(11):3964–72. doi: 10.1523/jneurosci.5709-09.2010.PubMedCrossRefGoogle Scholar
  144. 144.
    Nicolo P, Rizk S, Magnin C, Pietro MD, Schnider A, Guggisberg AG. Coherent neural oscillations predict future motor and language improvement after stroke. Brain. 2015;138(Pt 10):3048–60. doi: 10.1093/brain/awv200.PubMedCrossRefGoogle Scholar
  145. 145.
    Mikell CB, Banks GP, Frey HP, Youngerman BE, Nelp TB, Karas PJ, et al. Frontal networks associated with command following after hemorrhagic stroke. Stroke. 2015;46(1):49–57. doi: 10.1161/strokeaha.114.007645.PubMedCrossRefGoogle Scholar
  146. 146.
    Dubovik S, Pignat JM, Ptak R, Aboulafia T, Allet L, Gillabert N, et al. The behavioral significance of coherent resting-state oscillations after stroke. Neuroimage. 2012;61(1):249–57. doi: 10.1016/j.neuroimage.2012.03.024.PubMedCrossRefGoogle Scholar
  147. 147.
    Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129(Pt 3):791–808. doi: 10.1093/brain/awh713.PubMedCrossRefGoogle Scholar
  148. 148.
    Rehme AK, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol. 2013;591(Pt 1):17–31. doi: 10.1113/jphysiol.2012.243469.PubMedCrossRefGoogle Scholar
  149. 149.
    Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19(4):1273–302.PubMedCrossRefGoogle Scholar
  150. 150.
    Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage. 2011;55(3):1147–58. doi: 10.1016/j.neuroimage.2011.01.014.PubMedCrossRefGoogle Scholar
  151. 151.
    Blicher JU, Near J, Naess-Schmidt E, Stagg CJ, Johansen-Berg H, Nielsen JF, et al. GABA levels are decreased after stroke and GABA changes during rehabilitation correlate with motor improvement. Neurorehabil Neural Repair. 2015;29(3):278–86. doi: 10.1177/1545968314543652.PubMedCrossRefGoogle Scholar
  152. 152.
    Dodakian L, Campbell Stewart J, Cramer SC. Motor imagery during movement activates the brain more than movement alone after stroke: a pilot study. J Rehabil Med. 2014;46(9):843–8. doi: 10.2340/16501977-1844.PubMedCrossRefGoogle Scholar
  153. 153.
    Mattioli F, Ambrosi C, Mascaro L, Scarpazza C, Pasquali P, Frugoni M, et al. Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study. Stroke. 2014;45(2):545–52. doi: 10.1161/strokeaha.113.003192.PubMedCrossRefGoogle Scholar
  154. 154.
    Hubbard IJ, Carey LM, Budd TW, Levi C, McElduff P, Hudson S, et al. A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabil Neural Repair. 2015;29(8):703–13. doi: 10.1177/1545968314562647.PubMedCrossRefGoogle Scholar
  155. 155.
    Kononen M, Tarkka IM, Niskanen E, Pihlajamaki M, Mervaala E, Pitkanen K, et al. Functional MRI and motor behavioral changes obtained with constraint-induced movement therapy in chronic stroke. Eur J Neurol. 2012;19(4):578–86. doi: 10.1111/j.1468-1331.2011.03572.x.PubMedCrossRefGoogle Scholar
  156. 156.
    Pellegrino G, Tomasevic L, Tombini M, Assenza G, Bravi M, Sterzi S, et al. Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation. Restor Neurol Neurosci. 2012;30(6):497–510. doi: 10.3233/rnn-2012-120227.PubMedGoogle Scholar
  157. 157.
    Sale P, Infarinato F, Del Percio C, Lizio R, Babiloni C, Foti C, et al. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation. Int J Rehabil Res. 2015;38(4):294–305. doi: 10.1097/mrr.0000000000000125.PubMedCrossRefGoogle Scholar
  158. 158.
    Varkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CW, et al. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair. 2013;27(1):53–62. doi: 10.1177/1545968312445910.PubMedCrossRefGoogle Scholar
  159. 159.
    Di Lazzaro V, Rothwell JC, Talelli P, Capone F, Ranieri F, Wallace AC, et al. Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: a proof of principle, sham-controlled study. Neurosci Lett. 2013;553:148–52. doi: 10.1016/j.neulet.2013.08.013.PubMedCrossRefGoogle Scholar
  160. 160.
    Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology. 2005;65(3):466–8. doi: 10.1212/01.wnl.0000173067.84247.36.PubMedCrossRefGoogle Scholar
  161. 161.
    Hsu WY, Cheng CH, Liao KK, Lee IH, Lin YY. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis. Stroke. 2012;43(7):1849–57. doi: 10.1161/strokeaha.111.649756.PubMedCrossRefGoogle Scholar
  162. 162.
    Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study. Lancet. 2001;358(9284):787–90. doi: 10.1016/s0140-6736(01)05966-9.PubMedCrossRefGoogle Scholar
  163. 163.
    Crisostomo EA, Duncan PW, Propst M, Dawson DV, Davis JN. Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol. 1988;23(1):94–7. doi: 10.1002/ana.410230117.PubMedCrossRefGoogle Scholar
  164. 164.
    Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 2011;10(2):123–30. doi: 10.1016/s1474-4422(10)70314-8.PubMedCrossRefGoogle Scholar
  165. 165.
    Brenneman MM, Hylin MJ, Corwin JV. The time-dependent and persistent effects of amphetamine treatment upon recovery from hemispatial neglect in rats. Behav Brain Res. 2015;293:153–61. doi: 10.1016/j.bbr.2015.07.032.PubMedCrossRefGoogle Scholar
  166. 166.
    Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86. doi: 10.1002/jnr.10691.PubMedCrossRefGoogle Scholar
  167. 167.
    Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82. doi: 10.1002/ana.20501.PubMedCrossRefGoogle Scholar
  168. 168.
    Kawamata T, Dietrich WD, Schallert T, Gotts JE, Cocke RR, Benowitz LI, et al. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci U S A. 1997;94(15):8179–84.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst Rev. 2015;10:CD004433. doi: 10.1002/14651858.CD004433.pub3.Google Scholar
  170. 170.
    Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21. doi: 10.1177/1545968307305457.PubMedCrossRefGoogle Scholar
  171. 171.
    Mead GE, Hsieh CF, Lee R, Kutlubaev MA, Claxton A, Hankey GJ, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database Syst Rev. 2012;11:CD009286. doi: 10.1002/14651858.CD009286.pub2.PubMedGoogle Scholar
  172. 172.
    Cramer SC. An overview of therapies to promote repair of the brain after stroke. Head Neck. 2011;33 Suppl 1:S5–7. doi: 10.1002/hed.21840.PubMedCrossRefGoogle Scholar
  173. 173.
    Vu Q, Xie K, Eckert M, Zhao W, Cramer SC. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology. 2014;82(14):1277–86. doi: 10.1212/wnl.0000000000000278.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Laible M, Grieshammer S, Seidel G, Rijntjes M, Weiller C, Hamzei F. Association of activity changes in the primary sensory cortex with successful motor rehabilitation of the hand following stroke. Neurorehabil Neural Repair. 2012;26(7):881–8. doi: 10.1177/1545968312437939.PubMedCrossRefGoogle Scholar
  175. 175.
    Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, et al. Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabil Neural Repair. 2008;22(5):505–13. doi: 10.1177/1545968308317531.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Wu J, Quinlan EB, Dodakian L, McKenzie A, Kathuria N, Zhou RJ, et al. Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain. 2015;138(Pt 8):2359–69. doi: 10.1093/brain/awv156.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Roopun AK, Middleton SJ, Cunningham MO, LeBeau FE, Bibbig A, Whittington MA, et al. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci U S A. 2006;103(42):15646–50. doi: 10.1073/pnas.0607443103.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Yang W, Liu TT, Song XB, Zhang Y, Li ZH, Cui ZH, et al. Comparison of different stimulation parameters of repetitive transcranial magnetic stimulation for unilateral spatial neglect in stroke patients. J Neurol Sci. 2015;359(1-2):219–25. doi: 10.1016/j.jns.2015.08.1541.PubMedCrossRefGoogle Scholar
  179. 179.
    Thimm M, Fink GR, Kust J, Karbe H, Sturm W. Impact of alertness training on spatial neglect: a behavioural and fMRI study. Neuropsychologia. 2006;44(7):1230–46. doi: 10.1016/j.neuropsychologia.2005.09.008.PubMedCrossRefGoogle Scholar
  180. 180.
    Clarkson AN, Overman JJ, Zhong S, Mueller R, Lynch G, Carmichael ST. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J Neurosci. 2011;31(10):3766–75. doi: 10.1523/jneurosci.5780-10.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54. doi: 10.1523/jneurosci.3834-03.2004.PubMedCrossRefGoogle Scholar
  182. 182.
    Kozlowski DA, James DC, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996;16(15):4776–86.PubMedGoogle Scholar
  183. 183.
    Ishida A, Misumi S, Ueda Y, Shimizu Y, Cha-Gyun J, Tamakoshi K, et al. Early constraint-induced movement therapy promotes functional recovery and neuronal plasticity in a subcortical hemorrhage model rat. Behav Brain Res. 2015;284:158–66. doi: 10.1016/j.bbr.2015.02.022.PubMedCrossRefGoogle Scholar
  184. 184.
    Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296(17):2095–104. doi: 10.1001/jama.296.17.2095.PubMedCrossRefGoogle Scholar
  185. 185.
    Wolf SL, Thompson PA, Winstein CJ, Miller JP, Blanton SR, Nichols-Larsen DS, et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke. 2010;41(10):2309–15. doi: 10.1161/strokeaha.110.588723.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, et al. Differential patterns of cortical reorganization following constraint-induced movement therapy during early and late period after stroke: a preliminary study. NeuroRehabilitation. 2014;35(3):415–26. doi: 10.3233/nre-141132.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, et al. Very Early Constraint-Induced Movement during Stroke Rehabilitation (VECTORS): a single-center RCT. Neurology. 2009;73(3):195–201. doi: 10.1212/WNL.0b013e3181ab2b27.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Dignam J, Copland D, McKinnon E, Burfein P, O’Brien K, Farrell A, et al. Intensive versus distributed aphasia therapy: a nonrandomized, parallel-group. dosage-controlled study. Stroke. 2015;46(8):2206–11. doi: 10.1161/strokeaha.115.009522.PubMedCrossRefGoogle Scholar
  189. 189.
    Milot MH, Cramer SC. Biomarkers of recovery after stroke. Curr Opin Neurol. 2008;21(6):654–9. doi: 10.1097/WCO.0b013e3283186f96.PubMedCrossRefGoogle Scholar
  190. 190.
    Burke E, Cramer SC. Biomarkers and predictors of restorative therapy effects after stroke. Curr Neurol Neurosci Rep. 2013;13(2):329. doi: 10.1007/s11910-012-0329-9.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015;78(6):860–70. doi: 10.1002/ana.24510.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Marchina S, Zhu LL, Norton A, Zipse L, Wan CY, Schlaug G. Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke. 2011;42(8):2251–6. doi: 10.1161/strokeaha.110.606103.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Forkel SJ, Thiebaut de Schotten M, Dell’Acqua F, Kalra L, Murphy DG, Williams SC. Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain. 2014;137(Pt 7):2027–39. doi: 10.1093/brain/awu113.PubMedCrossRefGoogle Scholar
  194. 194.
    Saver JL, Johnston KC, Homer D, Wityk R, Koroshetz W, Truskowski LL, et al. Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. The RANTTAS investigators. Stroke. 1999;30(2):293–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Groisser BN, Copen WA, Singhal AB, Hirai KK, Schaechter JD. Corticospinal tract diffusion abnormalities early after stroke predict motor outcome. Neurorehabil Neural Repair. 2014;28(8):751–60. doi: 10.1177/1545968314521896.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL. Motor outcome after subcortical stroke correlates with the degree of cortical reorganization. Clin Neurophysiol. 2004;115(9):2144–50. doi: 10.1016/j.clinph.2004.04.001.PubMedCrossRefGoogle Scholar
  197. 197.
    Schaechter JD, van Oers CA, Groisser BN, Salles SS, Vangel MG, Moore CI, et al. Increase in sensorimotor cortex response to somatosensory stimulation over subacute poststroke period correlates with motor recovery in hemiparetic patients. Neurorehabil Neural Repair. 2012;26(4):325–34. doi: 10.1177/1545968311421613.PubMedCrossRefGoogle Scholar
  198. 198.
    Urbin MA, Hong X, Lang CE, Carter AR. Resting-state functional connectivity and its association with multiple domains of upper-extremity function in chronic stroke. Neurorehabil Neural Repair. 2014;28(8):761–9. doi: 10.1177/1545968314522349.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Kim DY, Quinlan EB, Gramer R, Cramer SC. BDNF Val66Met polymorphism is related to motor system function after stroke. Phys Ther. 2015. doi: 10.2522/ptj.20150135.PubMedCentralGoogle Scholar
  200. 200.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of California, Irvine Medical CenterOrangeUSA
  2. 2.Department of Anatomy & NeurobiologyUniversity of California, IrvineIrvineUSA
  3. 3.Department of Physical Medicine & RehabilitationUniversity of California, Irvine Medical CenterOrangeUSA
  4. 4.Sue & Bill Gross Stem Cell Research CenterUniversity of California, IrvineIrvineUSA

Personalised recommendations