Translational Stroke Research

, Volume 7, Issue 1, pp 42–48 | Cite as

Matched Cohort Analysis of the Effects of Limb Remote Ischemic Conditioning in Patients with Aneurysmal Subarachnoid Hemorrhage

  • Azim N. Laiwalla
  • Yinn Cher Ooi
  • Raymond Liou
  • Nestor R. Gonzalez
Original Article

Abstract

Remote ischemic conditioning (RIC) is a powerful innate response to transient subcritical ischemia that protects against severe ischemic insults at distant sites. We have previously shown the safety and feasibility of limb RIC in aneurysmal subarachnoid hemorrhage (aSAH) patients, along with changes in neurovascular and cerebral metabolism. In this study, we aim to detect the potential effect of an established lower-limb conditioning protocol on clinical outcomes of aSAH patients. Neurologic outcome (modified Rankin Scale (mRS)) of patients enrolled in a prospective trial (RIPC-SAH) was measured. A matching algorithm was applied to identify control patients with aSAH from an institutional departmental database. RIC patients underwent four lower-limb conditioning sessions, consisting of four 5-min cycles per session over nonconsecutive days. Good functional outcome was defined as mRS of 0 to 2. The study population consisted of 21 RIC patients and 61 matched controls. There was no significant intergroup difference in age, gender, aneurysm location, clipping vs coiling, Fisher grades, Hunt and Hess grades, or vasospasm. RIC was independently associated with good outcome (OR 5.17; 95 % confidence interval (CI) 1.21–25.02). RIC also showed a trend toward lower incidence of stroke (28.6 vs. 47.5 %) and death (4.8 vs. 19.7 %). Lower-limb RIC following aSAH appears to have a positive effect in the functional outcomes of patients with aSAH. While this effect is consistent with prior preclinical studies, future trials are necessary to conclusively evaluate the effects of RIC for aSAH.

Keywords

Aneurysm Neurologic outcomes Remote ischemic preconditioning Stroke Subarachnoid hemorrhage 

References

  1. 1.
    Koch S, Gonzalez N. Preconditioning the human brain: proving the principle in subarachnoid hemorrhage. Stroke. 2013;44:1748–53. doi:10.1161/STROKEAHA.111.000773.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhao H-G, Li W-B, Li Q-J, Chen X-L, Liu H-Q, Feng R-F, et al. Limb ischemic preconditioning attenuates apoptosis of pyramidal neurons in the CA1 hippocampus induced by cerebral ischemia-reperfusion in rats. Sheng Li Xue Bao. 2004;56:407–12.PubMedGoogle Scholar
  3. 3.
    Jin RL, Li WB, Li QJ, Zhang M, Man XH, Sun XC, et al. The role of extracellular signal-regulated kinases in the neuroprotection of limb ischernic preconditioning. Neurosci Res. 2006;55:65–73. doi:10.1016/j.neures.2006.01.006.CrossRefPubMedGoogle Scholar
  4. 4.
    Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006;404:170–5. doi:10.1016/j.neulet.2006.05.037.CrossRefPubMedGoogle Scholar
  5. 5.
    Ren C, Gao X, Steinberg GK, Zhao H. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience. 2008;151:1099–103. doi:10.1016/j.neuroscience.2007.11.056.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Bilgin-Freiert A, Dusick JR, Stein NR, Etchepare M, Vespa P, Gonzalez NR. Muscle microdialysis to confirm sublethal ischemia in the induction of remote ischemic preconditioning. Trans Stroke Res. 2012;3:266–72. doi:10.1007/s12975-012-0153-1.CrossRefGoogle Scholar
  7. 7.
    Gonzalez NR, Hamilton R, Bilgin-Freiert A, Dusick J, Vespa P, Hu X, et al. Cerebral hemodynamic and metabolic effects of remote ischemic preconditioning in patients with subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:193–8. doi:10.1007/978-3-7091-1192-5_36.PubMedGoogle Scholar
  8. 8.
    Gonzalez NR, Connolly M, Dusick JR, Bhakta H, Vespa P. Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery. 2014;75:590–8. doi:10.1227/NEU.0000000000000514.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Koch S, Katsnelson M, Dong C, Perez-Pinzon M. Remote ischemic limb preconditioning after subarachnoid hemorrhage: a phase Ib study of safety and feasibility. Stroke. 2011;42:1387–91. doi:10.1161/STROKEAHA.110.605840.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Koch S, Sacco RL, Perez-Pinzon MA. Preconditioning the brain: moving on to the next frontier of neurotherapeutics. Stroke. 2012;43:1455–7. doi:10.1161/STROKEAHA.111.646919.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Meng R, Asmaro K, Meng L, Liu Y, Ma C, Xi C, et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology. 2012;79:1853–61. doi:10.1212/WNL.0b013e318271f76a.CrossRefPubMedGoogle Scholar
  12. 12.
    Walsh SR, Nouraei SA, Tang TY, Sadat U, Carpenter RH, Gaunt ME. Remote ischemic preconditioning for cerebral and cardiac protection during carotid endarterectomy: results from a pilot randomized clinical trial. Vasc Endovasc Surg. 2010;44:434–9. doi:10.1177/1538574410369709.CrossRefGoogle Scholar
  13. 13.
    Teunissen LL, Rinkel GJ, Algra A, van Gijn J. Risk factors for subarachnoid hemorrhage: a systematic review. Stroke. 1996;27:544–9. doi:10.1161/01.STR.27.3.544.CrossRefPubMedGoogle Scholar
  14. 14.
    Claassen J, Bernardini GL, Kreiter K, Bates J, Du YE, Copeland D, et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited. Stroke. 2001;32:2012–20. doi:10.1161/hs0901.095677.CrossRefPubMedGoogle Scholar
  15. 15.
    Molyneux A. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet. 2002;360:1267–74. doi:10.1016/S0140-6736(02)11314-6.CrossRefPubMedGoogle Scholar
  16. 16.
    Gonzalez NR, Boscardin WJ, Glenn T, Vinuela F, Martin NA. Vasospasm probability index: a combination of transcranial Doppler velocities, cerebral blood flow, and clinical risk factors to predict cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2007;107:1101–12. doi:10.3171/JNS-07/12/1101.CrossRefPubMedGoogle Scholar
  17. 17.
    Oskouian RJ, Martin NA, Lee JH, Glenn TC, Guthrie D, Gonzalez NR, et al. Multimodal quantitation of the effects of endovascular therapy for vasospasm on cerebral blood flow, transcranial Doppler ultrasonographic velocities, and cerebral artery diameters. Neurosurgery. 2002;51:30–43. doi:10.1097/00006123-200207000-00005.CrossRefPubMedGoogle Scholar
  18. 18.
    Weisscher N, Vermeulen M, Roos YB, De Haan RJ. What should be defined as good outcome in stroke trials; a modified Rankin score of 0–1 or 0–2? J Neurol. 2008;255:867–74. doi:10.1007/s00415-008-0796-8.CrossRefPubMedGoogle Scholar
  19. 19.
    Duncan PW, Jorgensen HS, Wade DT. Outcome measures in acute stroke trials: a systematic review and some recommendations to improve practice. Stroke. 2000;31:1429–38. doi:10.1161/01.STR.31.6.1429.CrossRefPubMedGoogle Scholar
  20. 20.
    Kelsey JL, Whittemore AS, Evans AS, Thompson WD. Methods in observational epidemiology. New York: Oxford University Press; 1996.Google Scholar
  21. 21.
    Hop JW, Rinkel GJ, Algra A, van Gijn J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke. 1997;28:660–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Cahill J, Zhang JH. Subarachnoid hemorrhage: is it time for a new direction? Stroke. 2009;40:S86–7. doi:10.1161/STROKEAHA.108.533315.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Dezfulian C, Garrett M, Gonzalez NR. Clinical application of preconditioning and postconditioning to achieve neuroprotection. Trans Stroke Res. 2012;4:19–24. doi:10.1007/s12975-012-0224-3.CrossRefGoogle Scholar
  24. 24.
    Duckwiler G. Balloon angioplasty and intra-arterial papaverine for vasospasm. J Stroke Cerebrovasc Dis. 1997;6:261–3.CrossRefPubMedGoogle Scholar
  25. 25.
    Vespa PM, Nuwer MR, Juhász C, Alexander M, Nenov V, Martin N, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103:607–15.CrossRefPubMedGoogle Scholar
  26. 26.
    Vespa PM. Acute presentation and early intensive care of acute aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 1997;6:230–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Vespa PM, Nenov V, Nuwer MR. Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J Clin Neurophysiol. 1999;16:1–13.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Azim N. Laiwalla
    • 1
  • Yinn Cher Ooi
    • 1
  • Raymond Liou
    • 1
  • Nestor R. Gonzalez
    • 1
    • 2
    • 3
  1. 1.Department of NeurosurgeryDavid Geffen School of Medicine at the University of CaliforniaLos Angeles (UCLA)USA
  2. 2.Department of RadiologyDavid Geffen School of Medicine at the University of CaliforniaLos Angeles (UCLA)USA
  3. 3.David Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations