Translational Stroke Research

, Volume 5, Issue 6, pp 711–718 | Cite as

miRNA Expression Profiles in Cerebrospinal Fluid and Blood of Patients with Acute Ischemic Stroke

  • Sofie Sølvsten Sørensen
  • Ann-Britt Nygaard
  • Ming-Yuan Nielsen
  • Kai Jensen
  • Thomas Christensen
Original Article

Abstract

The aims of the study were (1) to determine whether miRNAs (microRNAs) can be detected in the cerebrospinal fluid (CSF) and blood of patients with ischemic stroke and (2) to compare these miRNA profiles with corresponding profiles from other neurological patients to address whether the miRNA profiles of CSF or blood have potential usefulness as diagnostic biomarkers of ischemic stroke. CSF from patients with acute ischemic stroke (n = 10) and patients with other neurological diseases (n = 10) was collected by lumbar puncture. Blood samples were taken immediately after. Expression profiles in the cell-free fractions of CSF and blood were analyzed by a microarray technique (miRCURY LNA™ microRNA Array, Exiqon A/S, Denmark) using a quantitative PCR (qPCR) platform containing 378 miRNA primers. In total, 183 different miRNAs were detected in the CSF, of which two miRNAs (let-7c and miR-221-3p) were found upregulated in relation to stroke. In the blood, 287 different miRNAs were detected of which two miRNAs (miR-151a-3p and miR-140-5p) were found upregulated and one miRNA (miR-18b-5p) was found downregulated in the stroke group. Some miRNAs occurred exclusively in the CSF including miR-523-3p which was detected in 50 % of the stroke patients, whereas it was completely absent in controls. Our preliminary results demonstrate that it is possible to detect and profile miRNAs in CSF and blood from patients with neurological diseases. Some miRNAs appear differentially expressed in the CSF and others in the blood of stroke patients. Currently, we are validating our results in larger groups of patients.

Keywords

Ischemic stroke miRNA expression profiling Diagnostic biomarker Cerebrospinal fluid Blood 

Notes

Acknowledgments

This project was supported by grants from the Research Foundation of Nordsjællands Hospital, Copenhagen University; the Research Foundation for Health Research of the Capital Region of Denmark; Helen Rude’s Foundation, Dagmar Marshall’s Foundation, and the Foundation of Lily Benthine Lund.

Compliance with Ethics Requirements

Conflict of Interest

All the authors declare that they have no conflicts of interest.

Ethical approval

All project procedures were approved by the Danish Research Ethics Committee (project ID: H-1-2011-094) and were in accordance with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients prior to inclusion. Patients did not receive any fee for participation in the study.

Supplementary material

12975_2014_364_MOESM1_ESM.doc (206 kb)
Online Resource 1 Regulation of the 144 most frequently detected miRNAs in plasma of acute ischemic stroke patients (DOC 206 kb)
12975_2014_364_MOESM2_ESM.doc (70 kb)
Online Resource 2 Estimation of the blood brain barrier function in neurological patients based on albumin CSF/serum concentration quotients (DOC 69 kb)
12975_2014_364_MOESM3_ESM.doc (58 kb)
Online Resource 3 Additional information on the patients included: symptoms and deficits, stroke severity, radiological findings and risk factors for ischemic stroke (DOC 58 kb)

References

  1. 1.
    Christensen T. Experimental focal cerebral ischemia—pathophysiology, metabolism and pharmacology of the ischemic penumbra. Thesis from University of Copenhagen; 2007. ISBN: 9788799213801.Google Scholar
  2. 2.
    Hossmann K-A. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26:1057–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Schmidt-Kastner R, Zhang B, Belayev L, Khoutorova L, Amin R, Busto R, et al. DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res. 2002;108:81–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Homo sapiens miRNAs in the miRBase at Manchester University. http://www.mirbase.org.
  6. 6.
    Li MA, He L. MicroRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays. 2012;34:670–80.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gauthier BR, Wollheim CB. MicroRNAs: “ribo-regulators” of glucose homeostasis. Nat Med. 2006;12:36–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Bi Y, Liu G, Yang R. MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009;218:467–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9:1274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5:R13.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39:959–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PTH, et al. MicroRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One. 2013;8:e66393.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Liu D-Z, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30:92–101.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M. Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS One. 2011;6:e14724.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lim K-Y, Chua J-H, Tan J-R, Swaminathan P, Sepramaniam S, Armugam A, et al. MicroRNAs in cerebral ischemia. Transl Stroke Res. 2010;1:287–303.PubMedCrossRefGoogle Scholar
  17. 17.
    Dharap A, Bowen K, Place R, Li L. Translational focal ischemia induces extensive temporal changes in rat cerebral MiroRNAome. J Cereb Blood Flow Metab. 2009;29:675–87.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al. Expression profile of microRNAs in young stroke patients. PLoS One. 2009;4:e7689.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 2008;14:27–41.PubMedGoogle Scholar
  20. 20.
    Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Walter J. MicroRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol. 2012;3:365–73.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Pacifici M, Delbue S, Ferrante P, Jeansonne D, Kadri F, Nelson S, et al. Cerebrospinal fluid miRNA profile in HIV-encephalitis. J Cell Physiol. 2013;228:1070–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zöllner H, Schmiegel W, et al. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma. Neuro-Oncol. 2012;14:29–33.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Baraniskin A, Kuhnhenn J, Schlegel U, Schmiegel W, Hahn S, Schroers R. MicroRNAs in cerebrospinal fluid as biomarker for disease course monitoring in primary central nervous system lymphoma. J Neuro-Oncol. 2012;109:239–44.CrossRefGoogle Scholar
  25. 25.
    Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-Oncol. 2012;14:689–700.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Haghikia A, Hellwig K, Baraniskin A, Holzmann A, Décard BF, Thum T. Regulated microRNAs in the CSF of patients with multiple sclerosis. Neurology. 2012;79:2133–70.CrossRefGoogle Scholar
  27. 27.
    Gallego JA, Gordon ML, Claycomb K, Bhatt M, Lencz T, Malhotra AK. In vivo microRNA detection and quantitation in cerebrospinal fluid. J Mol Neurosci. 2012;47:243–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24:35–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184:101–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Pfaffl MW. Quantification strategies in real-time PCR. In: Bustin SA, editor. A-Z of quantitative PCR. La Jolla: International University Line; 2004. p. 89–120.Google Scholar
  32. 32.
    Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurorodiol Sci. 2001;184:101–22.CrossRefGoogle Scholar
  33. 33.
    Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476–87.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun. 2011;405:42–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y-T, Tsai P-C, Liao Y-C, Hsu C-Y, Juo S-HH. Circulating microRNAs have a sex-specific association with metabolic syndrome. J Biomed Sci. 2013;20:72.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucl Acids Res. 2010;38:7248–59.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hata R, Gillardon F, Michaelidis TM, Hossmann KA. Targeted disruption of the bcl-2 gene in mice exacerbates focal ischemic brain injury. Metab Brain Dis. 1999;14:117–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Gregersen R, Lambertsen K, Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab. 2000;20:53–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Kinouchi H, Sharp FR, Hill MP, Koistinaho J, Sagar SM, Chan PH. Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1993;13:105–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Christensen T, Jørgensen MB, Diemer NH. Impairment of Fos protein formation in the rat infarct borderzone by MK-801, but not by NBQX. Acta Neurol Scand. 1993;87:510–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Shi B, Guo Y, Wang J, Gao W. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord. 2010;10:11.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37:1375–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sofie Sølvsten Sørensen
    • 1
  • Ann-Britt Nygaard
    • 2
  • Ming-Yuan Nielsen
    • 3
  • Kai Jensen
    • 1
  • Thomas Christensen
    • 1
  1. 1.Department of NeurologyNordsjællands Hospital, Copenhagen UniversityHillerødDenmark
  2. 2.Department of Clinical Biochemistry, Nordsjællands HospitalCopenhagen UniversityHillerødDenmark
  3. 3.Department of Radiology, Nordsjællands HospitalCopenhagen UniversityHillerødDenmark

Personalised recommendations