Translational Stroke Research

, Volume 6, Issue 1, pp 39–49 | Cite as

Longitudinal Assessment of Imatinib’s Effect on the Blood–Brain Barrier After Ischemia/Reperfusion Injury with Permeability MRI

  • Zamir Merali
  • Jackie Leung
  • D. Mikulis
  • F. Silver
  • Andrea Kassner
Original Article


Acute ischemic stroke (AIS) often results in degeneration of the blood–brain barrier (BBB), which can lead to vasogenic edema and an increased risk of intracerebral hemorrhage. Imatinib is an agent that may be able to protect the BBB and reduce the risk of the harmful consequences of BBB degeneration. We sought to measure the effect of Imatinib on the BBB after experimental stroke longitudinally in vivo with permeability dynamic contrast-enhanced MRI. Ischemia/reperfusion injury was induced with a transient middle cerebral artery occlusion surgery. Rats were given Imatinib at 2 and 20 h after stroke onset. Post-assessment included neurologic functioning, MR imaging, Evans Blue extravasation, Western blot, and immunohistology assay. Imatinib protected the BBB by 24 h but failed to decrease BBB permeability at an earlier time-point. Imatinib also reduced infarct volume, edema, and improved neurologic functioning by 24 h. Rats treated with Imatinib also had a higher expression of the BBB structural protein Zona ocludens-1 and a reduction in nuclear factor-kappa beta (NF-κβ) activation. Imatinib is a promising agent to protect the BBB after AIS, but its effect on the BBB may not become prominent until 24 h after the onset of ischemia. This finding may help elucidate Imatinib’s role in the clinical management of AIS and influence future study designs.


Blood–brain barrier Acute stroke Brain ischemia Brain edema Focal ischemia MRI 


  1. 1.
    The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke. 1997;28(11):2109–18.CrossRefGoogle Scholar
  2. 2.
    Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Xing C, Hayakawa K, Lok J, Arai K, Lo EH. Injury and repair in the neurovascular unit. Neurol Res. 2012;34(4):325–30.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kassner A, Roberts T, Taylor K, Silver F, Mikulis D. Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. Am J Neuroradiol. 2005;26(9):2213–7.PubMedGoogle Scholar
  5. 5.
    Kassner A, Thornhill R. Measuring the integrity of the human blood–brain barrier using magnetic resonance imaging. Methods Mol Biol. 2011;686:229–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Armstead WM, Nassar T, Akkawi S, Smith DH, Xiao-Han C, Cines DB, et al. Neutralizing the neurotoxic effects of exogenous and endogenous tPA. Nat Neurosci. 2006;9(9):1150–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Sandoval KE, Witt KA. Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008;32(2):200–19.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood–brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39(4):1121–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Paciaroni M, Agnelli G, Corea F, Ageno W, Alberti A, Lanari A, et al. Early hemorrhagic transformation of brain infarction: rate, predictive factors, and influence on clinical outcome: results of a prospective multicenter study. Stroke. 2008;39(8):2249–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Abbruscato TJ, Lopez SP, Mark KS, Hawkins BT, Davis TP. Nicotine and cotinine modulate cerebral microvascular permeability and protein expression of ZO-1 through nicotinic acetylcholine receptors expressed on brain endothelial cells. J Pharm Sci. 2002;91(12):2525–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Jiao H, Wang Z, Liu Y, Wang P, Xue Y. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci. 2011;44(2):130––9. Jun 2011.PubMedCrossRefGoogle Scholar
  12. 12.
    Abrams MB, Nilsson I, Lewandowski SA, Kjell J, Codeluppi S, Olson L, et al. Imatinib enhances functional outcome after spinal cord injury. PLoS One. 2012;7(6):e38760.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Su E, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood–brain barrier integrity during ischemic stroke. Nat Med. 2008;14:731.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ma Q, Huang B, Khatibi N, Rolland 2nd W, Suzuki H, Zhang JH, et al. PDGFR-alpha inhibition preserves blood–brain barrier after intracerebral hemorrhage. Ann Neurol. 2011;70(6):920–31.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Adzemovic MZ, Zeitelhofer M, Eriksson U, Olsson T, Nilsson I. Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood–brain barrier integrity and by modulating the peripheral immune response. PLoS One. 2013;8(2):e56586.PubMedCrossRefGoogle Scholar
  16. 16.
    Deli MA, Ábrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127.PubMedCrossRefGoogle Scholar
  17. 17.
    Hoffmann A, Bredno J, Wendland MF, Derugin N, Hom J, Schuster T, et al. Validation of in vivo magnetic resonance imaging blood–brain barrier permeability measurements by comparison with gold standard histology. Stroke. 2011;42(7):2054–60.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Durukan A, Tatlisumak T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol, Biochem Behav. 2007;87(1):179–97.CrossRefGoogle Scholar
  19. 19.
    Liu S, Zhen G, Meloni BP, Campbell K, Winn HR. Rodent stroke model guidelines for preclinical stroke trials (1st edition). J Exp Stroke Transl Med. 2009;2(2):2–27.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Kriz J. Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol. 2006;18(1–2):145–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111(8):4022–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Uluç K, Miranpuri A, Kujoth GC, Aktüre E, Başkaya MK. Focal cerebral ischemia model by endovascular suture occlusion of the middle cerebral artery in the rat. J Vis Exp. 2011;05((48):e1978.Google Scholar
  23. 23.
    Takano K, Tatlisumak T, Bergmann AG, Gibson III DG, Fisher M. Reproducibility and reliability of middle cerebral artery occlusion using a silicone-coated suture (Koizumi) in rats. J Neurol Sci. 1997;153(1):8–11.PubMedCrossRefGoogle Scholar
  24. 24.
    Vidarsson L, Thornhill RE, Liu F, Mikulis DJ, Kassner A. Quantitative permeability magnetic resonance imaging in acute ischemic stroke: how long do we need to scan? Magn Reson Imaging. 2009;27(9):1216–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Gerriets T, Stolz E, Walberer M, Müller C, Kluge A, Bachmann A, et al. Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke. 2004;35(2):566–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Radu M, Chernoff J. An in vivo assay to test blood vessel permeability. J Vis Exp. 2013;73:e50062.PubMedGoogle Scholar
  28. 28.
    Garcia JH, Wagner S, Liu K, Hu X. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation. Stroke. 1995;26(4):627–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Ciarcia R, Vitiello MT, Galdiero M, Pacilio C, Iovane V, d'Angelo D, et al. Imatinib treatment inhibit IL-6, IL-8, NF-KB and AP-1 production and modulate intracellular calcium in CML patients. J Cell Physiol. 2012;227(6):2798–803.PubMedCrossRefGoogle Scholar
  30. 30.
    Watson PM, Anderson JM, Vanltallie CM, Doctrow SR. The tight-junction-specific protein ZO-l is a component of the human and rat blood–brain barriers. Neurosci Lett. 1991;129(1).Google Scholar
  31. 31.
    Neumann-Haefelin T, Kastrup A, de Crespigny A, Yenari MA, Ringer T, Sun GH, et al. Serial MRI after transient focal cerebral ischemia in rats: dynamics of tissue injury, blood–brain barrier damage, and edema formation. Stroke. 2000;31(8):1965–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Xi G, Keep RF, Hua Y, Xiang J, Hoff JT. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke. 1999;30(6):1247–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, Elliott PJ, et al. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia–reperfusion brain injury. J Cereb Blood Flow Metab. 2002;22(9):1068–79.PubMedCrossRefGoogle Scholar
  34. 34.
    Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Karjalainen-Lindsberg ML, et al. Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke. 2004;35(4):987–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Carroll JE, Hess DC, Howard EF, Hill WD. Is nuclear factor-kappaB a good treatment target in brain ischemia/reperfusion injury? Neuroreport. 2000;11(9):R1–4.PubMedGoogle Scholar
  36. 36.
    Zhang L, Zhang ZG, Zhang RL, Lu M, Adams J, Elliott PJ, et al. Postischemic (6-Hour) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke. 2001;32(12):2926–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Hill WD, Hess DC, Carroll JE, Wakade CG, Howard EF, Chen Q, et al. The NF-kappaB inhibitor diethyldithiocarbamate (DDTC) increases brain cell death in a transient middle cerebral artery occlusion model of ischemia. Brain Res Bull. 2001;55(3):375–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Kim E, Matsuse M, Saenko V, Suzuki K, Ohtsuru A, Mitsutake N, et al. Imatinib enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation in anaplastic thyroid carcinoma cells. Thyroid. 2012;22(7):717–24.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils — a key component of ischemia reperfusion injury. Shock. 2013 Oct 1.Google Scholar
  40. 40.
    Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab. 1999;19(8):819–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Stanimirovic D, Satoh K. Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol. 2000;10(1):113–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zamir Merali
    • 1
  • Jackie Leung
    • 1
  • D. Mikulis
    • 2
  • F. Silver
    • 3
  • Andrea Kassner
    • 1
    • 4
  1. 1.Department of Physiology and Experimental MedicineHospital for Sick ChildrenTorontoCanada
  2. 2.Division of Neuroradiology, Joint Department of Medical ImagingToronto Western HospitalTorontoCanada
  3. 3.Division of NeurologyUniversity Health NetworkTorontoCanada
  4. 4.Department of Medical ImagingUniversity of TorontoTorontoCanada

Personalised recommendations