Translational Stroke Research

, Volume 5, Issue 5, pp 586–594 | Cite as

Deferoxamine Attenuates Acute Hydrocephalus After Traumatic Brain Injury in Rats

  • Jinbing Zhao
  • Zhi Chen
  • Guohua Xi
  • Richard F. Keep
  • Ya Hua
Original Article


Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague–Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient–echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm3 in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm3 in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.


Deferoxamine Hydrocephalus Lateral fluid percussion Traumatic brain injury 



This study was supported by grants NS-073595, NS-079157 and NS-084049 from the National Institutes of Health (NIH) and grants 81301049 and 30872675 from NSFC. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH and NSFC.

Conflict of Interest

Jinbing Zhao, Zhi Chen, Guohua Xi, Richard F. Keep and Ya Hua declare that they have no conflict of interest.


  1. 1.
    Langlois JA, Kegler SR, Butler JA, Gotsch KE, Johnson RL, Reichard AA, et al. Traumatic brain injury-related hospital discharges. Results from a 14-state surveillance system, 1997. MMWR Surveill Summ. 2003;52(4):1–20.PubMedGoogle Scholar
  2. 2.
    Faul M. Traumatic brain injury in the United States : emergency department visits, hospitalizations, and deaths, 2002–2006. US Dept of Health and Human Services, Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010.Google Scholar
  3. 3.
    Marmarou A, Foda MA, Bandoh K, Yoshihara M, Yamamoto T, Tsuji O, et al. Posttraumatic ventriculomegaly: hydrocephalus or atrophy? A new approach for diagnosis using CSF dynamics. J Neurosurg. 1996;85(6):1026–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Cardoso ER, Galbraith S. Posttraumatic hydrocephalus—a retrospective review. Surg Neurol. 1985;23:261–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Hawkins TD, Lloyd AD, Fletcher GI, Hanka R. Ventricular size following head injury: a clinico-radiological study. Clin Radiol. 1976;27(3):279–89.PubMedCrossRefGoogle Scholar
  6. 6.
    Kishore PR, Lipper MH, Miller JD, Girevendulis AK, Becker DP, Vines FS. Post-traumatic hydrocephalus in patients with severe head injury. Neuroradiology. 1978;16:261–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang EF, Meeker M, Holland MC. Acute traumatic intraparenchymal hemorrhage: risk factors for progression in the early post-injury period. Neurosurgery. 2006;58(4):647–56. discussion, 56.PubMedCrossRefGoogle Scholar
  8. 8.
    Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu Y, McArthur DL, Alger JR, Etchepare M, Hovda DA, Glenn TC, et al. Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(4):883–94.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakamura T, Keep Richard F, Hua Y, Schallert T, Hoff Julian T, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Hua Y, Nakamura T, Keep RF, Wu J, Schallert T, Hoff JT, et al. Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg. 2006;104(2):305–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen B, Cheng Q, Yang K, Lyden PD. Thrombin mediates severe neurovascular injury during ischemia. Stroke. 2010;41(10):2348–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Kjellin KG. The CSF, iron in patients with neurological diseases. Acta Neurol Scand. 1967;43(3):299–313.PubMedCrossRefGoogle Scholar
  15. 15.
    Wan S, Hua Y, Keep RF, Hoff JT, Xi G. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:199–202.PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki H, Muramatsu M, Kojima T, Taki W. Intracranial heme metabolism and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 2003;34(12):2796–800.PubMedCrossRefGoogle Scholar
  17. 17.
    Onyszchuk G, LeVine SM, Brooks WM, Berman NEJ. Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: a magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neurosci Lett. 2009;452:204–8.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Raz E, Jensen JH, Ge Y, Babb JS, Miles L, Reaume J, et al. Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study. AJNR Am J Neuroradiol. 2011;32:1851–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu G, Xi G, Hua Y, Sagher O. T2* magnetic resonance imaging sequences reflect brain tissue iron deposition following intracerebral hemorrhage. Transl Stroke Res. 2010;1(1):31–4.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Zhang L, Hu R, Li M, Li F, Meng H, Zhu G, et al. Deferoxamine attenuates iron-induced long-term neurotoxicity in rats with traumatic brain injury. Neurol Sci. 2013;34(5):639–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Long DA, Ghosh K, Moore AN, Dixon CE, Dash PK. Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res. 1996;717(1–2):109–17.PubMedCrossRefGoogle Scholar
  22. 22.
    Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G. Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke. 2010;41(2):375–82.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40(5):1858–63.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke. 2010;42(2):465–70.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30(11):1793–803.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Dixon CE, Lighthall JW, Anderson TE. Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma. 1988;5(2):91–104.PubMedCrossRefGoogle Scholar
  27. 27.
    Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI. Fluid-percussion-induced traumatic brain injury model in rats. Nat Protoc. 2010;5:1552–63.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Xi G, Keep RF, Hua Y, Xiang J, Hoff JT. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke. 1999;30(6):1247–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Jin H, Xi G, Keep RF, Wu J, Hua Y. DARPP-32 to quantify intracerebral hemorrhage-induced neuronal death in basal Ganglia. Transl Stroke Res. 2013;4(1):130–4.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Guo F, Hua Y, Wang J, Keep RF, Xi G. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Transl Stroke Res. 2012;3(1):130–7.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Qin Z, Karabiyikoglu M, Hua Y, Silbergleit R, He Y, Keep RF, et al. Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke. 2007;38(4):1362–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67(1):110–9.PubMedCrossRefGoogle Scholar
  33. 33.
    McIntosh TK, Noble L, Andrews B, Faden AI. Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma. 1987;4(2):119–34.PubMedGoogle Scholar
  34. 34.
    McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, et al. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience. 1989;28(1):233–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92(6):1016–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M. Complement activation in the human brain after traumatic head injury. J Neurotrauma. 2001;18(12):1295–311.PubMedCrossRefGoogle Scholar
  37. 37.
    Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, et al. Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab. 1998;18(3):257–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Takagi H, Tamaki Y, Morii S, Ohwada T. Rapid enlargement of ventricles within seven hours after head injury. Surg Neurol. 1981;16:103–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Losowska-Kaniewska D, Oles A. Imaging examinations in children with hydrocephalus. Adv Med Sci. 2007;52 Suppl 1:176–9.PubMedGoogle Scholar
  40. 40.
    Kuker W, Thiex R, Rohde I, Rohde V, Thron A. Experimental acute intracerebral hemorrhage. Value of MR sequences for a safe diagnosis at 1.5 and 0.5 T. Acta Radiol. 2000;41(6):544–52.PubMedCrossRefGoogle Scholar
  41. 41.
    Linfante I, Llinas RH, Caplan LR, Warach S. MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke. 1999;30(11):2263–7.PubMedCrossRefGoogle Scholar
  42. 42.
    de Backer ME, Nabuurs RJ, van Buchem MA, van der Weerd L. MR-based molecular imaging of the brain: the next frontier. AJNR Am J Neuroradiol. 2010;31(9):1577–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Nahed BV, Darbar A, Doiron R, Saad A, Robson CD, Smith ER. Acute hydrocephalus secondary to obstruction of the foramen of monro and cerebral aqueduct caused by a choroid plexus cyst in the lateral ventricle. Case report. J Neurosurg. 2007;107(3 Suppl):236–9.PubMedGoogle Scholar
  44. 44.
    Yoshimoto Y, Ochiai C, Kawamata K, Endo M, Nagai M. Aqueductal blood clot as a cause of acute hydrocephalus in subarachnoid hemorrhage. AJNR Am J Neuroradiol. 1996;17(6):1183–6.PubMedGoogle Scholar
  45. 45.
    Massicotte EM, Del Bigio MR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg. 1999;91(1):80–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Iwanowski L, Olszewski J. The effects of subarachnoid injections of iron-containing substances on the central nervous system. J Neuropathol Exp Neurol. 1960;19:433–48.PubMedCrossRefGoogle Scholar
  47. 47.
    Suzuki H, Muramatsu M, Tanaka K, Fujiwara H, Kojima T, Taki W. Cerebrospinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol. 2006;253:1170–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Rouault TA, Zhang DL, Jeong SY. Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis. 2009;24(4):673–84.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20(1):77–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Keberle H. The biochemistry of desferrioxamine and its relation to iron metabolism. Ann N Y Acad Sci. 1964;119:758–68.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jinbing Zhao
    • 1
  • Zhi Chen
    • 1
  • Guohua Xi
    • 1
  • Richard F. Keep
    • 1
  • Ya Hua
    • 1
  1. 1.Department of NeurosurgeryUniversity of MichiganAnn ArborUSA

Personalised recommendations