Translational Stroke Research

, Volume 5, Issue 2, pp 190–198 | Cite as

Inflammation and Cerebral Aneurysms

  • Koji HosakaEmail author
  • Brian L. Hoh
Original Article


Cerebral aneurysms (CAs) occur in up to 5 % of the population in the US, and up to 7 % of all strokes are caused by CA rupture. Little is known about the pathophysiology of cerebral aneurysm formation, though inflammatory cells such as macrophages and neutrophils have been found in the walls of CAs. After many studies of both human specimens and experimentally induced animal models of aneurysms, the predominant model for CA formation and progression is as follows: (1) endothelial damage and degeneration of the elastic lamina, (2) inflammatory cell recruitment and infiltration, (3) and chronic remodeling of vascular wall. Endothelial damage can be caused by changes in hemodynamic stress, which results in the upregulation of proinflammatory cytokine secretion followed by the recruitment of various inflammatory cells. This recruitment and subsequent infiltration induces smooth muscle cell proliferation, apoptosis, and remodeling of the artery wall. These complex events are thought to lead to aneurysm rupture. This review will focus on the role of the immune system in the formation and progression of saccular CA and the ways in which the immune response may be modulated to treat aneurysms and prevent rupture.


Cerebral aneurysm Inflammation Inflammatory cells Cytokine Hemodynamic stress Remodeling 


Ethic Approval

This article does not contain any studies with human or animal subjects.

Conflict of Interest

Koji Hosaka is a consultant for Stryker.

Brian Hoh is Edge Therapeutics, steering committee member for clinical trail.


  1. 1.
    Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain : J Neurol. 2000;123(Pt 2):205–21.Google Scholar
  2. 2.
    Wiebers DO, Whisnant JP, Huston 3rd J, Meissner I, Brown Jr RD, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103–10.PubMedGoogle Scholar
  3. 3.
    Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355(9):928–39.PubMedGoogle Scholar
  4. 4.
    Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2(1):43–53.PubMedGoogle Scholar
  5. 5.
    van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid hemorrhage. Lancet. 2007;369(9558):306–18.PubMedGoogle Scholar
  6. 6.
    Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2,143 patients with ruptured intracranial aneurysms: a randomized comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005;366(9488):809–17.PubMedGoogle Scholar
  7. 7.
    Spetzler RF, McDougall CG, Albuquerque FC, Zabramski JM, Hills NK, Partovi S, et al. The barrow ruptured aneurysm trial: 3-year results. J Neurosurg. 2013;119(1):146–57.PubMedGoogle Scholar
  8. 8.
    Park SH, Yim MB, Lee CY, Kim E, Son EI. Intracranial fusiform aneurysms: it's pathogenesis, clinical characteristics, and managements. J Korean Neurosurg Soc. 2008;44(3):116–23.PubMedCentralPubMedGoogle Scholar
  9. 9.
    al-Yamany M, Ross IB. Giant fusiform aneurysm of the middle cerebral artery: successful Hunterian ligation without distal bypass. Br J Neurosurg. 1998;12(6):572–5.PubMedGoogle Scholar
  10. 10.
    Schievink WI. Intracranial aneurysms. N Engl J Med. 1997;336(1):28–40.PubMedGoogle Scholar
  11. 11.
    Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, et al. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke; J Cereb Circ. 2004;35(11):2500–5.Google Scholar
  12. 12.
    Jou LD, Lee DH, Morsi H, Mawad ME. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol. 2008;29(9):1761–7.PubMedGoogle Scholar
  13. 13.
    Castro M, Putman C, Radaelli A, Frangi A, Cebral J. Hemodynamics and rupture of terminal cerebral aneurysms. Acad Radiol. 2009;16(10):1201–7.PubMedGoogle Scholar
  14. 14.
    Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysms. Ann Rev Fluid Mech. 2009;41:91–107.Google Scholar
  15. 15.
    Takao H, Murayama Y, Otsuka S, Qian Y, Mohamed A, Masuda S, et al. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke; J Cereb Circ. 2012;43(5):1436–9.Google Scholar
  16. 16.
    Hoh BL, Rabinov JD, Pryor JC, Ogilvy CS. A modified technique for using elastase to create saccular aneurysms in animals that histologically and hemodynamically resemble aneurysms in human. Acta Neurochir. 2004;146(7):705–11.PubMedGoogle Scholar
  17. 17.
    Tada Y, Kanematsu Y, Kanematsu M, Nuki Y, Liang EI, Wada K, et al. A mouse model of intracranial aneurysm: technical considerations. Acta Neurochir Suppl. 2011;111:31–5.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Chyatte D, Bruno G, Desai S, Todor DR. Inflammation and intracranial aneurysms. Neurosurgery. 1999;45(5):1137–46. discussion 1146–1137.PubMedGoogle Scholar
  19. 19.
    Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J, et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke; J Cereb Circ. 2004;35(10):2287–93.Google Scholar
  20. 20.
    Hashimoto T, Meng H, Young WL. Intracranial aneurysms: links among inflammation, hemodynamics, and vascular remodeling. Neurol Res. 2006;28(4):372–80.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Gene expression profile of the intima and media of experimentally induced cerebral aneurysms in rats by laser-microdissection and microarray techniques. Intl J Mol Med. 2008;22(5):595–603.Google Scholar
  22. 22.
    Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van Rooijen N, et al. Critical roles of macrophages in the formation of intracranial aneurysm. Stroke; J Cereb Circ. 2011;42(1):173–8.Google Scholar
  23. 23.
    Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31(5):969–79.PubMedGoogle Scholar
  24. 24.
    Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78(6):539–52.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Gu L, Tseng SC, Rollins BJ. Monocyte chemoattractant protein-1. Chem Immunol. 1999;72:7–29.PubMedGoogle Scholar
  26. 26.
    Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N. Impact of monocyte chemoattractant protein-1 deficiency on cerebral aneurysm formation. Stroke; J Cereb Circ. 2009;40(3):942–51.Google Scholar
  27. 27.
    Andreakos ET, Foxwell BM, Brennan FM, Maini RN, Feldmann M. Cytokines and anti-cytokine biologicals in autoimmunity: present and future. Cytokine Growth Factor Rev. 2002;13(4–5):299–313.PubMedGoogle Scholar
  28. 28.
    Borish LC, Steinke JW. Cytokines and chemokines. J Allergy Clin Immunol. 2003;111(2 Suppl):460–75.Google Scholar
  29. 29.
    Jayaraman T, Berenstein V, Li X, Mayer J, Silane M, Shin YS, et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery. 2005;57(3):558–64. discussion 558–564.PubMedGoogle Scholar
  30. 30.
    Jayaraman T, Paget A, Shin YS, Li X, Mayer J, Chaudhry H, et al. TNF-alpha-mediated inflammation in cerebral aneurysms: a potential link to growth and rupture. Vasc Health Risk Manag. 2008;4(4):805–17.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Young AM, Karri SK, You W, Ogilvy CS. Specific TNF-alpha inhibition in cerebral aneurysm formation and subarachnoid hemorrhage. Curr Drug Saf. 2012;7(3):190–6.PubMedGoogle Scholar
  32. 32.
    Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283(5403):845–8.PubMedGoogle Scholar
  33. 33.
    Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Investig. 2000;106(11):1331–9.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002;195(9):1145–54.PubMedCentralPubMedGoogle Scholar
  35. 35.
    Hoh BL, Hosaka K, Downes DP, Nowicki KW, Wilmer EN, Velat GJ, Scott EW: Stromal cell-derived factor-1 promoted angiogenesis and inflammatory cell infiltration in aneurysm walls. Journal of neurosurgery 2013. doi: 10.3171/2013.9.JNS122074.
  36. 36.
    Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol. 1998;10(5):602–8.PubMedGoogle Scholar
  37. 37.
    Becker LC. Yin and yang of MCP-1. Circ Res. 2005;96(8):812–4.PubMedGoogle Scholar
  38. 38.
    Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008;75(2):346–59.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Thomson EM, Williams A, Yauk CL, Vincent R. Overexpression of tumor necrosis factor-alpha in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways. Am J Pathol. 2012;180(4):1413–30.PubMedGoogle Scholar
  40. 40.
    Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R. Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation. 2009;119(16):2209–16.PubMedGoogle Scholar
  41. 41.
    Pagano MB, Zhou HF, Ennis TL, Wu X, Lambris JD, Atkinson JP, et al. Complement-dependent neutrophil recruitment is critical for the development of elastase-induced abdominal aortic aneurysm. Circulation. 2009;119(13):1805–13.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Cohen JR, Parikh S, Grella L, Sarfati I, Corbie G, Danna D, et al. Role of the neutrophil in abdominal aortic aneurysm development. Cardiovasc Surg. 1993;1(4):373–6.PubMedGoogle Scholar
  43. 43.
    Rao SK, Reddy KV, Cohen JR. Role of serine proteases in aneurysm development. Ann N Y Acad Sci. 1996;800:131–7.PubMedGoogle Scholar
  44. 44.
    Eliason JL, Hannawa KK, Ailawadi G, Sinha I, Ford JW, Deogracias MP, et al. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation. Circulation. 2005;112(2):232–40.PubMedGoogle Scholar
  45. 45.
    Ostergaard JR. Risk factors in intracranial saccular aneurysms. Aspects on the formation and rupture of aneurysms and development of cerebral vasospasm. Acta Neurol Scand. 1989;80(2):81–98.PubMedGoogle Scholar
  46. 46.
    Bunton TE, Biery NJ, Myers L, Gayraud B, Ramirez F, Dietz HC. Phenotypic alteration of vascular smooth muscle cells precedes electrolysis in a mouse model of Marfan syndrome. Circ Res. 2001;88(1):37–43.PubMedGoogle Scholar
  47. 47.
    Sonesson B, Hansen F, Lanne T. Abdominal aortic aneurysm: a general defect in the vasculature with focal manifestations in the abdominal aorta? J Vasc Surg. 1997;26(2):247–54.PubMedGoogle Scholar
  48. 48.
    Jamous MA, Nagahiro S, Kitazato KT, Tamura T, Aziz HA, Shono M, et al. Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats. J Neurosurg. 2007;107(2):405–11.PubMedGoogle Scholar
  49. 49.
    Kondo S, Hashimoto N, Kikuchi H, Hazama F, Nagata I, Kataoka H. Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke; J Cereb Circ. 1998;29(1):181–8. discussion 189.Google Scholar
  50. 50.
    Sumner DS, Hokanson DE, Strandness Jr DE. Stress–strain characteristics and collagen–elastin content of abdominal aortic aneurysms. Surg Gynecol Obstet. 1970;130(3):459–66.PubMedGoogle Scholar
  51. 51.
    Busuttil RW, Rinderbriecht H, Flesher A, Carmack C. Elastase activity: the role of elastase in aortic aneurysm formation. J Surg Res. 1982;32(3):214–7.PubMedGoogle Scholar
  52. 52.
    Lindsay TF, Luo XP, Lehotay DC, Rubin BB, Anderson M, Walker PM, et al. Ruptured abdominal aortic aneurysm, a “two-hit” ischemia/reperfusion injury: evidence from an analysis of oxidative products. J Vasc Surg. 1999;30(2):219–28.PubMedGoogle Scholar
  53. 53.
    Kasama T, Miwa Y, Isozaki T, Odai T, Adachi M, Kunkel SL. Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):273–9.PubMedGoogle Scholar
  54. 54.
    Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: contribution of interleukin-1beta and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol. 2009;29(7):1080–6.PubMedGoogle Scholar
  55. 55.
    Johnston WF, Salmon M, Su G, Lu G, Stone ML, Zhao Y, et al. Genetic and pharmacologic disruption of interleukin-1 beta signaling inhibits experimental aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2013;33(2):294–304.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Zhou HF, Yan H, Cannon JL, Springer LE, Green JM, Pham CT. CD43-mediated IFN-gamma production by CD8+ T cells promotes abdominal aortic aneurysm in mice. J Immunol. 2013;190(10):5078–85.PubMedGoogle Scholar
  57. 57.
    Nuki Y, Tsou TL, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T. Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension. 2009;54(6):1337–44.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke; J Cereb Circ. 1999;30(7):1396–401.Google Scholar
  59. 59.
    Hansson GK. Immune and inflammatory mechanisms in the pathogenesis of atherosclerosis. J Atheroscler Thromb. 1994;1 Suppl 1:S6–9.PubMedGoogle Scholar
  60. 60.
    Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 1995;15(8):1145–51.PubMedGoogle Scholar
  61. 61.
    Robson MC, Steed DL, Franz MG. Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38(2):72–140.PubMedGoogle Scholar
  62. 62.
    Szycher M, Lee SJ. Modern wound dressings: a systematic approach to wound healing. J Biomater Appl. 1992;7(2):142–213.PubMedGoogle Scholar
  63. 63.
    Richardson M. Acute wounds: an overview of the physiological healing process. Nurs Times. 2004;100(4):50–3.PubMedGoogle Scholar
  64. 64.
    Nagata I, Handa H, Hasimoto N, Hazama F. Experimentally induced cerebral aneurysms in rats: VII. Scanning electron microscope study. Surg Neurol. 1981;16(4):291–6.PubMedGoogle Scholar
  65. 65.
    Kojima M, Handa H, Hashimoto N, Kim C, Hazama F. Early changes of experimentally induced cerebral aneurysms in rats: scanning electron microscopic study. Stroke; J Cereb Circ. 1986;17(5):835–41.Google Scholar
  66. 66.
    Kim C, Cervos-Navarro J, Kikuchi H, Hashimoto N, Hazama F. Alterations in cerebral vessels in experimental animals and their possible relationship to the development of aneurysms. Surg Neurol. 1992;38(5):331–7.PubMedGoogle Scholar
  67. 67.
    Herrmann J, Lerman LO, Rodriguez-Porcel M, Holmes Jr DR, Richardson DM, Ritman EL, et al. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res. 2001;51(4):762–6.PubMedGoogle Scholar
  68. 68.
    Gossl M, Versari D, Mannheim D, Ritman EL, Lerman LO, Lerman A. Increased spatial vasa vasorum density in the proximal LAD in hypercholesterolemia—implications for vulnerable plaque-development. Atherosclerosis. 2007;192(2):246–52.PubMedGoogle Scholar
  69. 69.
    Aoki T, Kataoka H, Moriwaki T, Nozaki K, Hashimoto N. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke; J Cereb Circ. 2007;38(8):2337–45.Google Scholar
  70. 70.
    Aoki T, Kataoka H, Morimoto M, Nozaki K, Hashimoto N. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke; J Cereb Circ. 2007;38(1):162–9.Google Scholar
  71. 71.
    Baker CJ, Fiore A, Connolly Jr ES, Baker KZ, Solomon RA. Serum elastase and alpha-1-antitrypsin levels in patients with ruptured and unruptured cerebral aneurysms. Neurosurgery. 1995;37(1):56–61. discussion 61–52.PubMedGoogle Scholar
  72. 72.
    Bruno G, Todor R, Lewis I, Chyatte D. Vascular extracellular matrix remodeling in cerebral aneurysms. J Neurosurg. 1998;89(3):431–40.PubMedGoogle Scholar
  73. 73.
    Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK, et al. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res. 2011;48(5):429–42.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Tronc F, Mallat Z, Lehoux S, Wassef M, Esposito B, Tedgui A. Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with NO. Arterioscler Thromb Vasc Biol. 2000;20(12):E120–6.PubMedGoogle Scholar
  75. 75.
    Caird J, Napoli C, Taggart C, Farrell M, Bouchier-Hayes D. Matrix metalloproteinases 2 and 9 in human atherosclerotic and non-atherosclerotic cerebral aneurysms. Eur J Neurol: Off J Eur Fed Neurol Soc. 2006;13(10):1098–105.Google Scholar
  76. 76.
    Ishibashi R, Aoki T, Nishimura M, Miyamoto S. Imidapril inhibits cerebral aneurysm formation in an angiotensin-converting enzyme-independent and matrix metalloproteinase-9-dependent manner. Neurosurgery. 2012;70(3):722–30.PubMedGoogle Scholar
  77. 77.
    Gong Y, Hart E, Shchurin A, Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Investig. 2008;118(9):3012–24.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Aoki T, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Cathepsin B, K, and S are expressed in cerebral aneurysms and promote the progression of cerebral aneurysms. Stroke; J Cereb Circ. 2008;39(9):2603–10.Google Scholar
  79. 79.
    Hosaka K, Downes DP, Nowicki KW, Hoh BL: modified murine intracranial aneurysm model: aneurysm formation and rupture by elastase and hypertension. Journal of NeuroInterventional Surgery 2013, In PressGoogle Scholar
  80. 80.
    Kilic T, Sohrabifar M, Kurtkaya O, Yildirim O, Elmaci I, Gunel M, et al. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls. Neurosurgery. 2005;57(5):997–1007. discussion 1997–1007.PubMedGoogle Scholar
  81. 81.
    Tulamo R, Frosen J, Junnikkala S, Paetau A, Pitkaniemi J, Kangasniemi M, et al. Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. Neurosurgery. 2006;59(5):1069–76. discussion 1076–1067.PubMedGoogle Scholar
  82. 82.
    Cai W, Devaux B, Schaper W, Schaper J. The role of Fas/APO 1 and apoptosis in the development of human atherosclerotic lesions. Atherosclerosis. 1997;131(2):177–86.PubMedGoogle Scholar
  83. 83.
    Mayr M, Xu Q. Smooth muscle cell apoptosis in arteriosclerosis. Exp Gerontol. 2001;36(7):969–87.PubMedGoogle Scholar
  84. 84.
    Hansson GK. Cell-mediated immunity in atherosclerosis. Curr Opin Lipidol. 1997;8(5):301–11.PubMedGoogle Scholar
  85. 85.
    Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635–6.PubMedGoogle Scholar
  86. 86.
    Brune B, von Knethen A, Sandau KB. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ. 1999;6(10):969–75.PubMedGoogle Scholar
  87. 87.
    Takagi Y, Ishikawa M, Nozaki K, Yoshimura S, Hashimoto N. Increased expression of phosphorylated c-Jun amino-terminal kinase and phosphorylated c-Jun in human cerebral aneurysms: role of the c-Jun amino-terminal kinase/c-Jun pathway in apoptosis of vascular walls. Neurosurgery. 2002;51(4):997–1002. discussion 1002–1004.PubMedGoogle Scholar
  88. 88.
    Valencia A, Morales H, Rivera R, Bravo E, Galvez M. Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med Eng Phys. 2008;30(3):329–40.PubMedGoogle Scholar
  89. 89.
    Rhoton Jr AL. Aneurysms. Neurosurgery. 2002;51(4 Suppl):S121–58.PubMedGoogle Scholar
  90. 90.
    Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LC, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003;81(3):177–99.PubMedGoogle Scholar
  91. 91.
    Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res. 2004;95(5):449–58.PubMedGoogle Scholar
  92. 92.
    Davies PF, Dewey Jr CF, Bussolari SR, Gordon EJ, Gimbrone Jr MA. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Investig. 1984;73(4):1121–9.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Davies PF, Mundel T, Barbee KA. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech. 1995;28(12):1553–60.PubMedGoogle Scholar
  94. 94.
    Resnick N, Yahav H, Khachigian LM, Collins T, Anderson KR, Dewey FC, et al. Endothelial gene regulation by laminar shear stress. Adv Exp Med Biol. 1997;430:155–64.PubMedGoogle Scholar
  95. 95.
    Davies PF, Shi C, Depaola N, Helmke BP, Polacek DC. Hemodynamics and the focal origin of atherosclerosis: a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci. 2001;947:7–16. discussion 16–17.PubMedGoogle Scholar
  96. 96.
    Sun D, Huang A, Sharma S, Koller A, Kaley G. Endothelial microtubule disruption blocks flow-dependent dilation of arterioles. Am J Physiol Heart Circ Physiol. 2001;280(5):H2087–93.PubMedGoogle Scholar
  97. 97.
    Helmke BP, Davies PF. The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann Biomed Eng. 2002;30(3):284–96.PubMedGoogle Scholar
  98. 98.
    Conway D, Schwartz MA: Lessons from the endothelial junctional mechanosensory complex. F1000 biology reports 2012, 4:1Google Scholar
  99. 99.
    Tanoue T, Tateshima S, Villablanca JP, Vinuela F, Tanishita K. Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am J Neuroradiol. 2011;32(9):1732–7.PubMedGoogle Scholar
  100. 100.
    Kadirvel R, Ding YH, Dai D, Zakaria H, Robertson AM, Danielson MA, et al. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits. Neuroradiology. 2007;49(12):1041–53.PubMedGoogle Scholar
  101. 101.
    Gimbrone Jr MA, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000;902:230–9. discussion 239–240.PubMedGoogle Scholar
  102. 102.
    Helmke BP, Goldman RD, Davies PF. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res. 2000;86(7):745–52.PubMedGoogle Scholar
  103. 103.
    Chen BP, Li YS, Zhao Y, Chen KD, Li S, Lao J, et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genom. 2001;7(1):55–63.Google Scholar
  104. 104.
    Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, et al. Role of actin filaments in endothelial cell–cell adhesion and membrane stability under fluid shear stress. Pflugers Arch: Eur J Physiol. 2001;442(5):675–87.Google Scholar
  105. 105.
    LaMack JA, Friedman MH. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am J Physiol Heart Circ Physiol. 2007;293(5):H2853–9.PubMedGoogle Scholar
  106. 106.
    Frangos JA, Eskin SG, McIntire LV, Ives CL. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985;227(4693):1477–9.PubMedGoogle Scholar
  107. 107.
    Khachigian LM, Resnick N, Gimbrone Jr MA, Collins T. Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Investig. 1995;96(2):1169–75.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Nagel T, Resnick N, Dewey Jr CF, Gimbrone Jr MA. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol. 1999;19(8):1825–34.PubMedGoogle Scholar
  109. 109.
    Brooks AR, Lelkes PI, Rubanyi GM. Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis. Endothelium: J Endothel Cell Res. 2004;11(1):45–57.Google Scholar
  110. 110.
    Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, et al. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A. 2004;101(8):2482–7.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Chiu JJ, Lee PL, Chen CN, Lee CI, Chang SF, Chen LJ, et al. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-[alpha] in endothelial cells. Arterioscler Thromb Vasc Biol. 2004;24(1):73–9.PubMedGoogle Scholar
  112. 112.
    Cho A, Courtman DW, Langille BL. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res. 1995;76(2):168–75.PubMedGoogle Scholar
  113. 113.
    Cho A, Mitchell L, Koopmans D, Langille BL. Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits. Circ Res. 1997;81(3):328–37.PubMedGoogle Scholar
  114. 114.
    Chiu JJ, Chen LJ, Chen CN, Lee PL, Lee CI. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J Biomech. 2004;37(4):531–9.PubMedGoogle Scholar
  115. 115.
    Hosaka K, Downes DP, Nowicki KW, Hoh BL: Modified murine intracranial aneurysm model: aneurysm formation and rupture by elastase and hypertension. Journal of neurointerventional surgery 2013Google Scholar
  116. 116.
    Broughton G, 2nd, Janis JE, Attinger CE: Wound healing: an overview. Plast Reconstr Surg 2006, 117(7 Suppl):1e-S-32e-SGoogle Scholar
  117. 117.
    Vanwijck R: [Surgical biology of wound healing]. Bull Mem Acad R Med Belg 2001, 156(3–4):175–184; discussion 185Google Scholar
  118. 118.
    Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A et al.: An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest, 121(3):985–997Google Scholar
  119. 119.
    Hoh BL, Velat GJ, Wilmer EN, Hosaka K, Fisher RC, Scott EW. A novel murine elastase saccular aneurysm model for studying bone marrow progenitor-derived cell-mediated processes in aneurysm formation. Neurosurgery. 2010;66(3):544–50. discussion 550.PubMedCentralPubMedGoogle Scholar
  120. 120.
    Hoh BL, Hosaka K, Downes DP, Nowicki KW, Fernandez CE, Batich CD, et al. Monocyte chemotactic protein-1 promotes inflammatory vascular repair of murine carotid aneurysms via a macrophage inflammatory protein-1alpha and macrophage inflammatory protein-2-dependent pathway. Circulation. 2011;124(20):2243–52.PubMedCentralPubMedGoogle Scholar
  121. 121.
    DiPietro LA, Burdick M, Low QE, Kunkel SL, Strieter RM. MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J Clin Investig. 1998;101(8):1693–8.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Weber KS, Nelson PJ, Grone HJ, Weber C. Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol. 1999;19(9):2085–93.PubMedGoogle Scholar
  123. 123.
    Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96(8):881–9.PubMedGoogle Scholar
  124. 124.
    Liehn EA, Piccinini AM, Koenen RR, Soehnlein O, Adage T, Fatu R, et al. A new monocyte chemotactic protein-1/chemokine CC motif ligand-2 competitor limiting neointima formation and myocardial ischemia/reperfusion injury in mice. J Am Coll Cardiol. 2010;56(22):1847–57.PubMedGoogle Scholar
  125. 125.
    Mori E, Komori K, Yamaoka T, Tanii M, Kataoka C, Takeshita A, et al. Essential role of monocyte chemoattractant protein-1 in development of restenotic changes (neointimal hyperplasia and constrictive remodeling) after balloon angioplasty in hypercholesterolemic rabbits. Circulation. 2002;105(24):2905–10.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of FloridaGainesvilleUSA

Personalised recommendations