Advertisement

Translational Stroke Research

, Volume 4, Issue 5, pp 488–499 | Cite as

Heart Rate Variability in Stroke Patients Submitted to an Acute Bout of Aerobic Exercise

  • Rodrigo Daminello Raimundo
  • Luiz Carlos de Abreu
  • Fernando Adami
  • Franciele Marques Vanderlei
  • Tatiana Dias de Carvalho
  • Isadora Lessa Moreno
  • Valdelias Xavier Pereira
  • Vitor Engracia Valenti
  • Monica Akemi Sato
Original Article

Abstract

Stroke has been associated with cardiac autonomic impairment due to damage in central nervous system. Dysfunction in heart rate variability (HRV) may reflect dysfunction of the autonomic nervous system. Aerobic training has been used in the rehabilitation procedure of patients, due to improvement of aerobic function and other beneficial effects as increased recruitment of motor units, favoring the development of muscle fibers. The purpose of this study was to evaluate the cardiac autonomic modulation in patients with stroke before, during, and after an acute bout of aerobic exercise. The heart rate of 38 stroke patients was recorded using a heart rate (HR) monitor and the data were used to assess cardiac autonomic modulation through HRV analysis. The patients were in supine position and remained at resting condition (R) for 10 min before starting the experiment. Afterwards, they were submitted to walking exercise (E) on a treadmill until achieve 50–70 % of maximum heart rate. After 30 min of aerobic exercise, the subjects were advised to remain in supine position for additional 30 min in order to record the HR during the recovery (RC) period. The recordings were divided in three periods: RC1, immediately after the end of exercise bout, RC2, between 12 and 17 min of recovery, and RC3, at the final 5 min of recovery. A significant decrease was observed during exercise in the MeanRR index (577.3 ± 92 vs. 861.1 + 109), RRtri (5.1 ± 2 vs. 9.1 ± 3), high frequency component (11.2 ± 4 vs. 167 ± 135 ms) and SD1 (5.7 ± 2 vs. 16.9 ± 7 ms) compared to resting values. The SDNN index reduced during E (27.6 ± 19) and RC1 (29.9 ± 11), RC2 (27.9 ± 9) and RC3 (32.4 ± 13) compared to resting values (42.4 ± 19). The low frequency component increased during E (545 ± 82), but decreased during RC1 (166.3 ± 129), RC2 (206.9 ± 152), and RC3 (249.5 ± 236) compared to R levels (394.6 ± 315). These findings suggest that stroke patients showed a reduced HRV during and at least 30 min after exercise, due to an autonomic imbalance reflected by increased indexes that represent the sympathetic nervous system.

Keywords

Cardiac autonomic modulation Heart rate Neurological disorders Cardiovascular responses Ischemia Vagus nerve Autonomic nervous system The sympathetic nervous system The parasympathetic nervous system 

Supplementary material

12975_2013_263_MOESM1_ESM.doc (26 kb)
ESM 1 (DOC 26 kb)
12975_2013_263_MOESM2_ESM.doc (176 kb)
ESM 2 (DOC 176 kb)
12975_2013_263_MOESM3_ESM.doc (35 kb)
ESM 3 (DOC 35 kb)

References

  1. 1.
    Myers MG, Norris JW, Hachinski VC, Weingert ME, Sole MJ. Cardiac sequelae of acute stroke. Stroke. 1982;13:838.PubMedCrossRefGoogle Scholar
  2. 2.
    Korpelainen JT, Sotaniemi KA, Makikallio A, Huikuri HV, Myllyla VV. Dynamic behavior of heart rate in ischemic stroke. Stroke. 1999;30:100.CrossRefGoogle Scholar
  3. 3.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–65.CrossRefGoogle Scholar
  4. 4.
    Pumprla J, Howorka K, Groves D, Chester M, Nolan J. Functional assessment of heart rate variability: physiological basis and practical applications. Int J Cardiol. 2002;84:1–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Talman WT. Cardiovascular regulation and lesions of the central nervous system. Ann Neurol. 1985;18:1.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen CF, Lai CL, Lin HF, Liou LM, Lin RT. Reappraisal of heart rate variability in acute ischemic stroke Kaohsiung. J Med Sci. 2011;27:215.Google Scholar
  7. 7.
    Tokgözoglu SL, Batur MK, Topçuoglu MA, Saribas O, Kes S, Oto A Effects of stroke localization on cardiac autonomic balance and sudden death stroke 1999, 30:1307–1311.Google Scholar
  8. 8.
    Talman NT. Cardiovascular regulation lesions of the central nervous system. Ann Neurol. 1985;18:1–12.PubMedCrossRefGoogle Scholar
  9. 9.
    WRITING GROUP MEMBERS, Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCrossRefGoogle Scholar
  10. 10.
    Langhorne P, Legg I, Pollock A, Sellars C. Evidence-based stroke rehabilitation. Age Ageing. 2002;31-S3:17–20.CrossRefGoogle Scholar
  11. 11.
    Cup EH, Pieterse AJ, Knuijt S, et al. Referral of patients with neuromuscular disease to occupational therapy, physical therapy and speech therapy: usual practice versus multidisciplinary advice. Disabil Rehabil. 2007;29:717–26.PubMedCrossRefGoogle Scholar
  12. 12.
    Van der Kooi EL, Lindeman E, Riphagen I. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev. 2005;1, CD003907.PubMedGoogle Scholar
  13. 13.
    Dawes H, Korpershoek N, Freebody J, et al. A pilot randomized controlled trial of a home-based exercise programme aimed at improving endurance and function in adults with neuromuscular disorders. J Neurol Neurosurg Psychiatry. 2006;77:959–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Pardini R, Matsudo SMM, Matsudo VKR, Araujo T, Andrade E, Braggion G. Validation of the International Physical Activity Questionaire (IPAQ-version 6): pilot study in Brazilian young adults. Rev Bras Ciên e Mov. 2001;9:45–51.Google Scholar
  15. 15.
    Tombaugh TN, Mcintyre NJ. The mini-mental state examination: a comprehensive review. JAGS. 1992;40:922–35.Google Scholar
  16. 16.
    Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 1998;120:25–30.Google Scholar
  17. 17.
    Fugl-Meyer AR, Jaasko L, Leyman I. The post-stroke hemiplegic patient. Scand J Rehabil Med. 1975;v7:13–3.Google Scholar
  18. 18.
    Kalra L, Crome P. The role of prognostic scores in targeting stroke rehabilitation in elderly patients. J Am Geriatr Soc. 1993;41:396–400.PubMedGoogle Scholar
  19. 19.
    Duncan PW, Goldstein LB, Horner RD. Similar motor recovery of upper and lower extremities after stroke. Stroke. 1994;25:n6.CrossRefGoogle Scholar
  20. 20.
    VI DIRETRIZES BRASILEIRAS DE HIPERTENSÃO. Arq Bras Cardiol. 2010;95(1):1–51.CrossRefGoogle Scholar
  21. 21.
    Camarda SR, Tebexreni AS, Páfaro CN, Sasai FB, Tambeiro VL, Juliano Y, et al. Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arq Bras Cardiol. 2008;91(5):311–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Robergs RA, Landwehr R. The surprising history of the Hrmax = “220-age” equation. J Exerc Physiol. 2002;5(2):1–10.Google Scholar
  23. 23.
    Policarpo FB, Fernandes FJ. Usar ou não a equação de estimativa “220 - idade?”. Rev Bras Cienc Mov. 2004;12:77–9.Google Scholar
  24. 24.
    Tanaka H, Monahan KD, Seals DR. Age—predicted maximal heart revisited. J Am Coll Cardiol. 2001;37:153–6.PubMedCrossRefGoogle Scholar
  25. 25.
    American College of Sports Medicine. ACSM´s Guidelines for exercise testing and prescription. Philadelphia: Lea & Febiger; 2000.Google Scholar
  26. 26.
    Godoy MF, Takakura IT, Correa PR. Relevância da análise do comportamento dinâmico não-linear (Teoria do Caos) como elemento prognóstico de morbidade e mortalidade em pacientes submetidos à cirurgia de revascularização miocárdica. Arq Ciênc Saúde. 2005;12(4):167–71.Google Scholar
  27. 27.
    Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33(7):518–38.CrossRefGoogle Scholar
  28. 28.
    Vanderlei LCM, Silva RA, Pastre CM, Azevedo FM, Godoy MF. Comparison of polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res. 2008;41:854–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Vanderlei LCM, Pastre CM, Hoshi RA, Carvalho TD. Godoy MF Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Rev Bras Cir Cardiovasc. 2009;24:205–17.PubMedCrossRefGoogle Scholar
  30. 30.
    Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):889–919.PubMedCrossRefGoogle Scholar
  31. 31.
    Ribeiro JP, Moraes Filho RS. Variabilidade da Frequência cardíaca como instrumento de investigação do sistema nervoso autônomo. Rev Bras Hipertens. 2005;12(1):14–20.Google Scholar
  32. 32.
    DiasdeCarvalho T, Pastre CM, Rossi RC, Abreu LC, Valenti VE, VanderleI LCM. Geometric index of heart rate variability in chronic obstructive pulmonary disease. Rev Port Pneumol. 2011;17(6):260–5.CrossRefGoogle Scholar
  33. 33.
    Vanderlei LC, Pastre CM, Freitas Jr IF, Godoy MF. Geometric indexes of heart rate variability in obese and eutrophic children. Arq Bras Cardiol. 2010;95:35–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Vanderlei FM, Rossi RC, Souza NM, Sá DA, Gonçalves TM, Pastre CM, et al. Heart rate variability in healthy adolescents at rest. J Hum Growth Dev. 2012;22(1):173–8.Google Scholar
  35. 35.
    Brunetto AF, Silva BM, Roseguini BT, Hirai DM, Guedes DP. Limiar ventilatório e variabilidade da frequência cardíaca em adolescentes. Rev Bras Med Esporte. 2005;11(1):22–7.CrossRefGoogle Scholar
  36. 36.
    Billinger S. Cardiovascular regulation after stroke: evidence of impairment, trainability, and implications for rehabilitation. Cardiopulm Phys Ther J. 2010;21(1):22–4.PubMedGoogle Scholar
  37. 37.
    Teixeira-Salmela LF, Silva PC, et al. Musculação e condicionamento aeróbio na performance funcional de hemiplégicos crônicos. Acta Fisiátrica. 2003;10(2):54–60.Google Scholar
  38. 38.
    Convertino VA. Effect of orthostatic stress on exercise performance after bed rest: relation to in-hospital rehabilitation. J Cardiac Rehabil. 1983;3:660–3.Google Scholar
  39. 39.
    Ebrahim S, Barer D, Nouri F. Use of the Nottingham Health Profile with patients after stroke. J Epidemiol Commun Health. 1986;40:166–9.CrossRefGoogle Scholar
  40. 40.
    Lee CD, Blair SN. Cardiorespiratory fitness and stroke mortality in men. Med Sci Sports Exerc. 2002;34:592–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Macko R, Frederick M, Forrester L, Hanley D, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke a randomized, controlled trial. Stroke. 2005;36:2206–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Stoller O, Bruin ED, Knols RH, Hunt KJ. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. BMC Neurol. 2012;12:45.PubMedCrossRefGoogle Scholar
  43. 43.
    Negrão CE, Moreira ED, Brum PC, Denadai ML, Krieger EM. Vagal and sympathetic control of heart rate during exercise by sedentary and exercise-trained rats. Brazilian J Med Biol Res. 1992;25:1045–52.Google Scholar
  44. 44.
    Casadei B, Moon J, Johnston J, Caiazza A, Sleight P. Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise? J Appl Physiol. 1996;81(2):556–64.PubMedGoogle Scholar
  45. 45.
    Gregoire J, Tuck S, Yamamoto Y. Heart rate variability at rest and exercise: influence of age, gender and physical training. J Appl Physiol. 1996;21(6):455–70.Google Scholar
  46. 46.
    Ginsburg P, Bartur G, Peleg S, Vatine JJ, Katz-Leurer M. Reproducibility of heart rate variability during rest, paced breathing and light-to-moderate intense exercise in patients one month after stroke. Eur Neurol. 2011;66(2):117–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Kouakam C, Guédon-Moreau L, Lucas C, Zghal N, Mahe I, Klug D, et al. Long-term evaluation of autonomic tone in patients below 50 years of age with unexplained cerebral infarction: relation to atrial vulnerability. Europace. 2000;2(4):297–303.PubMedCrossRefGoogle Scholar
  48. 48.
    Park J, Lee S, Jeon M. Atrial fibrillation detection by heart rate variability in Poincare plot. Biomed Eng Online. 2009;11(8):38.CrossRefGoogle Scholar
  49. 49.
    Mainardi L, Corino V, Belletti S, Terranova P, Lombardi F. Low frequency component in systolic arterial pressure variability in patients with persistent atrial fibrillation. Auton Neurosci. 2009;151(2):147–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Lewis SF, Taylor WF, Graham RM, Pettinger WA, Schutte JE, Blomqvist CG. Cardiovascular responses to exercise as functions of absolute and relative work load. J Appl Physiol. 1983;54:1314–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Danielsson A, Sunnerhagen KS. Oxygen consumption during treadmill walking with and without body weight support in patients with hemiparesis after stroke and in healthy subjects. Arch Phys Med Rehabil. 2000;81(7):953–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Svantesson U, Takahashi H, Carlsson U, Danielsson A, Sunnerhagen KS. Muscle and tendon stiffness in patients with upper motor neuron lesion following a stroke. Eur J Appl Physiol. 2000;82(4):275–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Macko RF, Smith GV, Dobrovolny CL, Sorkin JD, Goldberg AP, Silver KH. Treadmill training improves fitness reserve in chronic stroke patients. Arch Phys Med Rehabil. 2001;82(7):879–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Chu KS, Eng JJ, Dawson AS, Harris JE, Ozkaplan A, Gylfadottir S. Water-based exercise for cardiovascular fitness in people with chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2004;85(6):870–4.PubMedCrossRefGoogle Scholar
  55. 55.
    MacKay-Lyons MJ, Makrides L. Longitudinal changes in exercise capacity after stroke. Arch Phys Med Rehabil. 2004;85(10):1608–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Bassi A, Colivicchi F, Santini M, Caltagirone C. Cardiac autonomic dysfunction and functional outcome after ischaemic stroke. Eur J Neurol. 2007;14(8):917–22.PubMedCrossRefGoogle Scholar
  57. 57.
    McLaren A, Kerr S, Allan L, Steen IN, Ballard C, Allen J, et al. Autonomic function is impaired in elderly stroke survivors. Stroke. 2005;36(5):1026–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Boettger MK, Schulz S, Berger S, Tancer M, Yeragani VK, Voss A, et al. Influence of age on linear and nonlinear measures of autonomic cardiovascular modulation. Ann Noninvasive Electrocardiol. 2010;15(2):165–74.PubMedCrossRefGoogle Scholar
  59. 59.
    Iellamo F, Legramante JM, Massaro M, Galante A, Pigozzi F, Nardozi C, et al. Spontaneous baroreflex modulation of heart rate and heart rate variability during orthostatic stress in tetraplegics and healthy subjects. J Hypertens. 2001;19(12):2231–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Raimondi G, Legramante JM, Iellamo F, Micozzi F, Sacco S, Balocchi R, et al. Effect of aging on responses to autonomic cardiovascular tests. J Gravit Physiol. 1999;6(1):P141–2.PubMedGoogle Scholar
  61. 61.
    Iellamo F. Neural mechanisms of cardiovascular regulation during exercise. Auton Neurosci. 2001;90(1–2):66–75. Review.PubMedCrossRefGoogle Scholar
  62. 62.
    Katz-Leurer M, Rotem H, Keren O, Meyer S. Heart rate and heart rate variability at rest and during exercise in boys who suffered a severe traumatic brain injury and typically-developed controls. Brain Inj. 2010;24(2):110–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Katz-Leurer M, Shochina M. The influence of autonomic impairment on aerobic exercise outcome in stroke patients. Neurorehabilitation. 2007;22(4):267–72.PubMedGoogle Scholar
  64. 64.
    Shetler K, Marcus R, Froelicher VF, Vora S, Kalisetti D, Prakash M. Heart rate recovery: validation and methodologic issues. J Am Coll Cardiol. 2001;38:1980–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341:1351–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Nishime OE, Cole CR, Blackstone EH, Pashkow FJ, Lauer MS. Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. JAMA. 2000;284:1392–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Tulppo MP, Mäkikallio TH, Seppänen T, Laukkanen RT, Huikuri HV Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol. 1998:424–9.Google Scholar
  68. 68.
    Leicht AS, Sinclair WH, Patterson MJ, Rudzki S, Tulppo MP, Fogarty AL, et al. Influence of postexercise cooling techniques on heart rate variability in men. Exp Physiol. 2009;94(6):695–703.PubMedCrossRefGoogle Scholar
  69. 69.
    Araújo CGS. Fast “on” and “off” heart rate transients at different bicycle exercise levels. Int J Sports Med. 1985;6:68–73.PubMedCrossRefGoogle Scholar
  70. 70.
    Imai K, Sato H, Hori M, Kusuoka H, Ozaki H, Yokoyama H, et al. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J Am Coll Cardiol. 1994;24:1529–35.PubMedCrossRefGoogle Scholar
  71. 71.
    Darr KC, Bassett DR, Morgan BJ, Thomas DP. Effects of age and training status on heart rate recovery after peak exercise. Am J Physiol. 1988;254:H340–3.PubMedGoogle Scholar
  72. 72.
    Terziotti P, Schena F, Gulli G, Cevese A. Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. Eur J Appl Physiol. 2001;84:187–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Dixon EM, Kamath MV, McCartney N, Fallen EL. Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res. 1992;26(7):713–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Nishioka Y, Sashika H, Andho N, Tochikubo O. Relation between 24-h heart rate variability and blood pressure fluctuation during exercise in stroke patients. Circ J. 2005;69(6):717–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Xiong L, Leung HH, Chen XY, Han JH, Leung TW, Soo YO, Chan AY, Lau AY, Wong LK Comprehensive assessment for autonomic dysfunction in different phases after ischemic stroke. Int J Stroke. 2012 1747–4949.Google Scholar
  76. 76.
    Lakusic N, Mahovic D, Babic T. Gradual recovery of impaired cardiac autonomic balance within first six months after ischemic cerebral stroke. Acta Neurol Belg. 2005;105(1):39–42.PubMedGoogle Scholar
  77. 77.
    Xiong L, Leung HW, Chen XY, Han JH, Leung WH, Soo OY, et al. Autonomic dysfunction in ischemic stroke with carotid stenosis. Acta Neurol Scand. 2012;126(2):122–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Xiong L, Leung H, Chen XY, Han JH, Leung T, Soo Y, et al. Preliminary findings of the effects of autonomic dysfunction on functional outcome after acute ischemic stroke. Clin Neurol Neurosurg. 2012;114(4):316–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Korpelainen JT, Huikuri HV, Sotaniemi KA, Myllylä VV. Abnormal heart rate variability reflecting autonomic dysfunction in brainstem infarction. Acta Neurol Scand. 1996;94(5):337–42.PubMedCrossRefGoogle Scholar
  80. 80.
    Mourot L, Bouhaddi M, Perrey S, Cappelle S, Henriet MT, Wolf JP, et al. Decrease in heart rate variability with overtraining: assessment by the Poincaré plot analysis. Clin Physiol Funct Imaging. 2004;24(1):10–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Goldstein DS, Bentho O, Park MY, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol. 2011;96(12):1255–61.PubMedGoogle Scholar
  82. 82.
    Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res. 2011;21(3):133–41.PubMedCrossRefGoogle Scholar
  83. 83.
    Orlandi G, Fanucchi S, Strata G, Pataleo L, Landucci Pellegrini L, Prontera C, et al. Transient autonomic nervous system dysfunction during hyperacute stroke. Acta Neurol Scand. 2001;102(5):317–21.CrossRefGoogle Scholar
  84. 84.
    Teixeira L, Ritti-Dias RM, Tinucci T, Mion Júnior D, Forjaz CL. Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol. 2011;111(9):2069–78.PubMedCrossRefGoogle Scholar
  85. 85.
    La Rovere MT, Bersano C, Gnemmi M, Specchia G, Schwartz PJ. Exercise induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation. 2002;106:945–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Robinson TG, Dawson SL, Eames PJ, Panerai RB, Potter JF. Cardiac baroreceptor sensitivity predicts long-term outcome after acute ischemic stroke. Stroke. 2003;34:705–12.PubMedCrossRefGoogle Scholar
  87. 87.
    Yamamoto K, Miyachi M, Saitoh T, Yoshioka A, Onodera S. Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc. 2001;33(9):1496–502.PubMedCrossRefGoogle Scholar
  88. 88.
    Yamamoto S, Iwamoto M, Inoue M, Harada N. Evaluation of the effect of heat exposure on the autonomic nervous system by heart rate variability and urinary catecholamines. J Occup Health. 2007;49(3):199–204.PubMedCrossRefGoogle Scholar
  89. 89.
    Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol. 1996;271:H244–52.PubMedGoogle Scholar
  90. 90.
    Global Burden of Disease Stroke Expert Group, Bennett DA. Methodology of the global and regional burden of stroke study. Neuroepidemiology. 2012;38(1):30–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rodrigo Daminello Raimundo
    • 1
  • Luiz Carlos de Abreu
    • 1
  • Fernando Adami
    • 1
  • Franciele Marques Vanderlei
    • 1
  • Tatiana Dias de Carvalho
    • 1
  • Isadora Lessa Moreno
    • 1
  • Valdelias Xavier Pereira
    • 1
  • Vitor Engracia Valenti
    • 1
  • Monica Akemi Sato
    • 1
  1. 1.Faculdade Medicina ABCSão PauloBrazil

Personalised recommendations