Translational Stroke Research

, Volume 4, Issue 4, pp 413–419 | Cite as

Biological Sex and Mechanisms of Ischemic Brain Injury

  • Paco S. Herson
  • Julie Palmateer
  • Patricia D. HurnEmail author
Original Article


Cerebrovascular disease is a leading cause of death from disease and of disability worldwide, affecting some 15 million people. The incidence of stroke or “brain attack” is unlikely to recede for a decade at minimum by most predictions, despite large public health initiatives in stroke prevention. It has been well established that stroke is also one of the most strikingly sex-specific diseases in its epidemiology and, in some cases, in patient outcomes. For example, women sustain lower rates of ischemic stroke relative to men, even beyond their menopausal years. In contrast, outcomes are worse in women in many clinical studies. The biological basis for this sexual dimorphism is a compelling story, and both hormone-dependent and hormone-independent factors are involved, the latter of which is the subject of this brief review. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury is an important step toward personalized medicine and effective therapeutic interventions in patients of both sexes.


Stroke Cerebral ischemia Gender Sexual Dimorphism Transient receptor potential M2 


Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Appelros P, Stegmayr B, Terent A. Sex differences in stroke epidemiology: a systematic review. Stroke. 2009;40:1082–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Sudlow CL, Warlow CP. Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. International Stroke Incidence Collaboration Stroke. 1997;28:491–9.Google Scholar
  3. 3.
    Sacco RL, Boden-Albala B, Gan R, Chen X, Kargman DE, Shea S, Paik MC, Hauser WA. Stroke incidence among white, black, and Hispanic residents of an urban community: the Northern Manhattan Stroke Study. Am J Epidemiol. 1998;147:259–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Maeda K, Toyoda K, Minematsu K, Kobayashi S. Effects of stroke difference on clinical features of acute ischemic stroke in Japan. J Stroke Cerebrovasc Dis. 2012 [Epub 2012 Aug 29.].Google Scholar
  5. 5.
    Bisdas T, Egorova N, Moskowitz AJ, Sosunov EA, Marin ML, Faries PL, Vouyouka AG. The impact of gender on in-hospital outcomes after carotid endarterectomy or stenting. Eur J Vasc Endovasc. 2012;44:244–50.CrossRefGoogle Scholar
  6. 6.
    Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, Khatiwoda A, Lisabeth L. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7:915–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Fullerton HJ, Wu YW, Zhao S, Johnston SC. Risk of stroke in children: ethnic and gender disparities. Neurology. 2003;61:189–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Golomb MR, Fullerton HJ, Nowak-Gottl U, Deveber G. Male predominance in childhood ischemic stroke: findings from the international pediatric stroke study. Stroke. 2009;40:52–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Gibson CL, Gray LJ, Murphy SP, Bath PM. Estrogens and experimental ischemic stroke: a systematic review. J Cereb Blood Flow Metab. 2006;26:1103–13.PubMedGoogle Scholar
  10. 10.
    Strom JO, Theodorsson A, Theodorsson E. Dose-related neuroprotective versus neurodamaging effects of estrogens in rat cerebral ischemia: a systematic analysis. J Cereb Blood Flow Metab. 2009;29:1359–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Pan Y, Zhang H, Acharya AB, Patrick PH, Oliver D, Morley JE. Effect of testosterone on functional recovery in a castrate male rat stroke model. Brain Res. 2005;1043:195–204.PubMedCrossRefGoogle Scholar
  12. 12.
    Pike CJ, Nguyen TV, Ramsden M, Yao M, Murphy MP, Rosario ER. Androgen cell signaling pathways involved in neuroprotective actions. Horm Behav. 2008;53(5):693–705.PubMedCrossRefGoogle Scholar
  13. 13.
    Uchida M, Palmateer JM, Herson PS, DeVries AC, Cheng J, Hurn PD. Dose-dependent effects of androgens on outcome after focal cerebral ischemia in adult male mice. J Cereb Blood Flow Metab. 2009;29:1454–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Hawk T, Zhang YQ, Rajakumar G, Day AL, Simpkins JW. Testosterone increases and estradiol decreases middle cerebral artery occlusion lesion size in male rats. Brain Res. 1998;796:296–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang SH, Perez E, Cutright J, Liu R, He Z, Day AL, Simpkins JW. Testosterone increases neurotoxicity of glutamate in vitro and ischemia-reperfusion injury in an animal model. J Appl Physiol. 2002;92:195–201.PubMedCrossRefGoogle Scholar
  16. 16.
    Cheng J, Alkayed NJ, Hurn PD. Deleterious effects of dihydrotestosterone on cerebral ischemic injury. J Cereb Blood Flow Metab. 2007;27:1553–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Dash RJ, Sethi BK, Nalini K, Singh S. Circulating testosterone in pure motor stroke. Funct Neurol. 1991;6:29–34.PubMedGoogle Scholar
  18. 18.
    Jeppesen LL, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS, Winther K. Decreased serum testosterone in men with acute ischemic stroke. Arterioscler Thromb Vasc Biol. 1996;16:749–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Hollander M, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A, Breteler MM. Incidence, risk, and case fatality of first ever stroke in the elderly population. The Rotterdam Study. J Neurol Neurosurg Psychiatry. 2003;74:317–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Yeap BB, Hyde Z, Almeida OP, Norman PE, Chubb SA, Jamrozik K, Flicker L, Hankey GJ. Lower testosterone levels predict incident stroke and transient ischemic attack in older men. J Clin Endocrinol Metab. 2009;94:2353–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Stamova B, Tian Y, Jickling G, Bushnell C, Zhan X, Liu D, Ander BP, Verro P, Patel V, Pevec WC, Hedayati N, Dawson DL, Jauch EC, Pancioli A, Broderick JP, Sharp FR. The X-chromosome has a different pattern of gene expression in women compared with men with ischemic stroke. Stroke. 2012;43(2):326–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Tian Y, Stamova B, Jickling GC, Liu D, Ander BP, Bushnell C, Zhan X, Davis RR, Verro P, Pevec WC, Hedayati N, Dawson DL, Khoury J, Jauch EC, Pancioli A, Broderick JP, Sharp FR. Effects of gender on geneexpression in the blood of ischemic stroke patients. J Cereb Blood Flow Metab. 2012;32(5):780–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu M, Dziennis S, Hurn PD, Alkayed NJ. Mechanisms of gender-linked ischemic brain injury. Restor Neurol Neurosci. 2009;27:163–79.PubMedGoogle Scholar
  24. 24.
    Vagnerova K, Koerner IP, Hurn PD. Gender and the injured brain. Anesth Analg. 2008;107:201–14.PubMedCrossRefGoogle Scholar
  25. 25.
    Lang JT, McCullough LD. Pathways to ischemic neuronal cell death: are sex differences relevant. J Transl Med. 2008;6:33.PubMedCrossRefGoogle Scholar
  26. 26.
    Hurn PD, Vannucci SJ, Hagberg H. Adult or perinatal brain injury: does sex matter. Stroke. 2005;36:193–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Hall ED, Pazara KE, Linseman KL. Sex differences in postischemic neuronal necrosis in gerbils. J Cereb Blood Flow Metab. 1991;11:292–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Alkayed NJ, Harukuni I, Kimes AS, London ED, Traystman RJ, Hurn PD. Gender-linked brain injury in experimental stroke. Stroke. 1998;29:159–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang YQ, Shi J, Rajakumar G, Day AL, Simpkins JW. Effects of gender and estradiol treatment on focal brain ischemia. Brain Res. 1998;784:321–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Carswell HV, Anderson NH, Clark JS, Graham D, Jeffs B, Dominiczak AF, Macrae IM. Genetic and gender influences on sensitivity to focal cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Hypertension. 1999;33:681–5.PubMedCrossRefGoogle Scholar
  31. 31.
    McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab. 2005;25:502–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke. 1976;7:46–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Alkayed NJ, Murphy SJ, Traystman RJ, Hurn PD, Miller VM. Neuroprotective effects of female gonadal steroids in reproductively senescent female rats. Stroke. 2000;31:161–8.PubMedCrossRefGoogle Scholar
  34. 34.
    McCullough LD, Blizzard K, Simpson ER, Oz OK, Hurn PD. Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. J Neurosci. 2003;23:8701–5.PubMedGoogle Scholar
  35. 35.
    Toung TK, Hurn PD, Traystman RJ, Sieber FE. Estrogen decreases infarct size after temporary focal ischemia in a genetic model of type 1 diabetes mellitus. Stroke. 2000;31:2701–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Vannucci SJ, Willing LB, Goto S, Alkayed NJ, Brucklacher RM, Wood TL, Towfighi J, Hurn PD, Simpson IA. Experimental stroke in the female diabetic, db/db, mouse. J Cereb Blood Flow Metab. 2001;21:52–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang W, Iliff JJ, Campbell CJ, Wang RK, Hurn PD, Alkayed NJ. Role of soluble epoxide hydrolase in the sex-specific vascular response to cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:1475–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Sakata A, Mogi M, Iwanami J, Tsukuda K, Min LJ, Fujita T, Iwai M, Ito M, Horiuchi M. Sex-different effect of angiotensin II type 2 receptor on ischemic brain injury and cognitive function. Brain Res. 2009;1300:14–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Park EM, Cho S, Frys KA, Glickstein SB, Zhou P, Anrather J, Ross ME, Iadecola C. Inducible nitric oxide synthase contributes to gender differences in ischemic brain injury. J Cereb Blood Flow Metab. 2006;26:392–401.PubMedCrossRefGoogle Scholar
  40. 40.
    Lieb K, Andrae J, Reisert I, Pilgrim C. Neurotoxicity of dopamine and protective effects of the NMDA receptor antagonist AP-5 differ between male and female dopaminergic neurons. Exp Neurol. 1995;134:222–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Du L, Bayir H, Lai Y, Zhang X, Kochanek PM, Watkins SC, Graham SH, Clark RS. Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biol Chem. 2004;279:38563–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Li H, Pin S, Zeng Z, Wang MM, Andreasson KA, McCullough LD. Sex differences in cell death. Ann Neurol. 2005;58:317–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Heyer A, Hasselblatt M, von Ahsen N, Hafner H, Siren AL, Ehrenreich H. In vitro gender differences in neuronal survival on hypoxia and in 17beta-estradiol-mediated neuroprotection. J Cereb Blood Flow Metab. 2005;25:427–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Johnsen D, Murphy SJ. Isoflurane preconditioning protects neurons from male and female mice against oxygen and glucose deprivation and is modulated by estradiol only in neurons from female mice. Neuroscience. 2011;199:366–74.CrossRefGoogle Scholar
  45. 45.
    Johnsen D, Murphy SJ. Isoflurane preconditioning protects astrocytes from oxygen and glucose deprivation independent of innate cell sex. J Neurosurg Anesthesiol. 2011;23:335–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Fairbanks SL, Young JM, Nelson JW, Davis CM, Koerner IP, Alkayed NJ. Mechanism of the sex difference in neuronal ischemic cell death. Neuroscience. 2012;219:183–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Sharma J, Nelluru G, Wilson MA, Johnston MV, Hossain MA. Sex-specific activation of cell death signaling pathways in cerebellar granule neurons exposed to oxygen glucose deprivation followed by reoxygenation. ASN Neuron. 2011;3:85–97.CrossRefGoogle Scholar
  48. 48.
    Ardeshiri A, Kelley MH, Korner IP, Hurn PD, Herson PS. Mechanism of progesterone neuroprotection of rat cerebellar Purkinje cells following oxygen-glucose deprivation. Eur J Neurosci. 2006;24:2567–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Jia J, Verma S, Nakayama S, Quillinan N, Grafe MJ, Hurn PD, Herson PS. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011;31:2160–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Verma S, Quillinan N, Yang YF, Nakayama S, Cheng J, Kelley MH, Herson PS. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett. 2012;530(1):41–6. doi: 10.1016/j.neulet.2012.09.044 [Epub 2012 Oct 2].PubMedCrossRefGoogle Scholar
  51. 51.
    Gupta NC, Davis CM, Nelson JW, Young JM, Alkayed NJ. Soluble epoxide hydrolase: sex differences and role in endothelial cell survival. Aterioscler Thromb Vasc Biol. 2012;32:1936–42.CrossRefGoogle Scholar
  52. 52.
    Liu M, Hurn PD, Roselli CE, Alkayed NJ. Role of P450 aromatase in sex-specific astrocytic cell death. J Cereb Blood Flow Metab. 2007;27:135–41.PubMedCrossRefGoogle Scholar
  53. 53.
    Liu M, Hurn PD, Alkayed NJ. Sex-specific modulation of astrocyte cell death by inflammatory cytokines. In: Krieglestein J, editor. Pharmacology of cerebral ischemia. Stuttgart: Medpharm Scientific Publishers; 2004.Google Scholar
  54. 54.
    Weisz J, Ward IL. Plasma testosterone and protesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology. 1980;106:306–16.PubMedCrossRefGoogle Scholar
  55. 55.
    McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 2011;14:677–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Vagnerova K, Liu K, Ardeshiri A, Cheng J, Murphy SJ, Hurn PD, Herson PS. Poly(ADP-ribose) polymerase-1 initiated neuronal cell death pathway—do androgens matter. Neuroscience. 2010;166:476–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Kauppinen TM, Swanson RA. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience. 2007;145:1267–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Moroni F. Poly(ADP-ribose)polymerase 1 (PARP-1) and postischemic brain damage. Curr Opin Pharmacol. 2008;8:96–103.PubMedCrossRefGoogle Scholar
  59. 59.
    Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab. 1997;17:1143–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Chiarugi A, Meli E, Calvani M, Picca R, Baronti R, Camaioni E, Costantino G, Marinozzi M, Pellegrini-Giampietro DE, Pellicciari R, Moroni F. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) polymerase-1: pharmacological characterization and neuroprotective effects in an in vitro model of cerebral ischemia. J Pharmacol Exp Ther. 2003;305:943–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Moroni F, Meli E, Peruginelli F, Chiarugi A, Cozzi A, Picca R, Romagnoli P, Pellicciari R, Pellegrini-Giampietro DE. Poly(ADP-ribose) polymerase inhibitors attenuate necrotic but not apoptotic neuronal death in experimental models of cerebral ischemia. Cell Death Differ. 2001;8:921–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med. 1997;3:1089–95.PubMedCrossRefGoogle Scholar
  63. 63.
    Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, Johns DC, Dawson TM, Dawson VL, Crain BJ, Traystman RJ, Mori S, Hurn PD. Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke. 2002;33:1101–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu F, Lang J, Li J, Benashski SE, Siegel M, Xu Y, McCullough LD. Sex differences in response to poly(ADP-ribose) polymerase-1 deletion and caspase inhibition after stroke. Stroke. 2011;42:1090–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang Y, Dawson VL, Dawson TM. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol. 2009;218:193–202.PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg H. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem. 2006;96:1016–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Yuan M, Siegel C, Zeng Z, Li J, Liu F, McCullough LD. Sex differences in the response to activation of the poly (ADP-ribose) polymerase pathway after experimental stroke. Exp Neurol. 2009;217:210–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA. 2006;103:18308–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Blenn C, Althaus FR, Malanga M. Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death. Biochem J. 2006;396:419–29.PubMedCrossRefGoogle Scholar
  70. 70.
    Ying W, Sevigny MB, Chen Y, Swanson RA. Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death. Proc Natl Acad Sci USA. 2001;98:12227–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Buelow B, Song Y, Scharenberg AM. The poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem. 2008;283:24571–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol. 2004;43:186–92.CrossRefGoogle Scholar
  73. 73.
    Herson PS, Koerner IP, Hurn PD. Sex, sex steroids, and brain injury. Semin Reprod Med. 2009;27:229–39.PubMedCrossRefGoogle Scholar
  74. 74.
    Hurn PD, Brass LM. Estrogen and stroke: a balanced analysis. Stroke. 2003;34:338–41.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang L, Li PP, Feng X, Barker JL, Smith SV, Rubinow DR. Sex-related differences in neuronal cell survival and signaling in rats. Neurosci Lett. 2003;337:65–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Kitano H, Young JM, Cheng J, Wang L, Hurn PD, Murphy SJ. Gender-specific response to isoflurane preconditioning in focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27:1377–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Renolleau S, Fau S, Charriaut-Marlangue C. Gender-related differences in apoptotic pathways after neonatal cerebral ischemia. Neuroscientist. 2008;14:46–52.PubMedCrossRefGoogle Scholar
  78. 78.
    Renolleau S, Fau S, Goyenvalle C, Joly LM, Chauvier D, Jacotot E, Mariani J, Charriaut-Marlangue C. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem. 2007;100:1062–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Liu F, Li Z, Li J, Siegel C, Yuan R, McCullough LD. Sex differences in caspase activation after stroke. Stroke. 2009;40:1842–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Hagberg H, Wilson MA, Matsushita H, Zhu C, Lange M, Gustavsson M, Poitras MF, Dawson TM, Dawson VL, Northington F, Johnston MV. PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem. 2004;90:1068–75.PubMedCrossRefGoogle Scholar
  81. 81.
    Liu M, Oyarzabal EA, Yang R, Murphy SJ, Hurn PD. A novel method for assessing sex-specific and genotype-specific response to injury in astrocyte culture. J Neurosci Methods. 2008;171:214–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Di Domenico F, Casalena G, Jia J, Sultana R, Barone E, Cai J, Pierce WM, Cini C, Mancuso C, Perluigi M, Davis CM, Alkayed NJ, Butterfield DA. Sex differences in brain proteomes of neuron-specific STAT3-null mice after cerebral ischemia/reperfusion. J Neurochem. 2012;121(4):680–92.PubMedCrossRefGoogle Scholar
  83. 83.
    Sampei K, Mandir AS, Asano Y, Wong PC, Traystman RJ, Dawson VL, Dawson TM, Hurn PD. Stroke outcome in double-mutant antioxidant transgenic mice. Stroke. 2000;31:2685–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Paco S. Herson
    • 1
  • Julie Palmateer
    • 2
  • Patricia D. Hurn
    • 2
    • 3
    Email author
  1. 1.Departments of Anesthesiology and PharmacologyUniversity of ColoradoDenverUSA
  2. 2.College of Natural SciencesUniversity of Texas at AustinAustinUSA
  3. 3.University of Texas SystemAustinUSA

Personalised recommendations