Translational Stroke Research

, Volume 3, Supplement 1, pp 52–61 | Cite as

The Molecular Mechanisms that Promote Edema After Intracerebral Hemorrhage

  • Daniel Bodmer
  • Kerry A. Vaughan
  • Brad E. Zacharia
  • Zachary L. Hickman
  • E. Sander Connolly
Review Article


Intracerebral hemorrhage (ICH) is a devastating type of stroke with no effective therapies. Clinical advances in ICH treatment are limited by an incomplete understanding of the molecular mechanisms responsible for secondary injury and poor outcome. Increasing evidence suggests that cerebral edema is a major contributor to secondary injury and poor outcome in ICH. ICH activates specific signaling pathways that promote edema and damage neuronal tissue. By increasing our understanding of these pathways, we may be able to target them pharmaceutically to reduce edema in ICH patients. In this review, we focus on three major signaling pathways that promote edema after ICH: (1) the coagulation cascade and thrombin, (2) the inflammatory response and matrix metalloproteinases, and (3) the complement cascade and hemoglobin toxicity. We will describe the experimental evidence that confirms these pathways promote edema in ICH, discuss potential targets for new therapies, and comment on important directions for future research.


Hemorrhagic stroke Intracerebral hemorrhage Cerebral edema Thrombin Complement system Inflammation 



We apologize to authors whose work could not be cited due to space limitations. E.S.C. is supported by National Institutes of Health funding.


  1. 1.
    Broderick J, Connolly S, Feldmann E, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116(16):e391–413.PubMedCrossRefGoogle Scholar
  2. 2.
    Broderick JP, Brott T, Tomsick T, Miller R, Huster G. Intracerebral hemorrhage more than twice as common as subarachnoid hemorrhage. J Neurosurg. 1993;78(2):188–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson CS, Chakera TM, Stewart-Wynne EG, Jamrozik KD. Spectrum of primary intracerebral haemorrhage in Perth, Western Australia, 1989–90: incidence and outcome. J Neurol Neurosurg Psychiatr. 1994;57(8):936–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Counsell C, Boonyakarnkul S. Primary intracerebral haemorrhage in the Oxfordshire community stroke project. Cerebrovascular. 1995;5:26–34.CrossRefGoogle Scholar
  5. 5.
    Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res. 2005;27(3):268–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson CS, Jamrozik KD, Broadhurst RJ, Stewart-Wynne EG. Predicting survival for 1 year among different subtypes of stroke. Results from the Perth Community Stroke Study. Stroke. 1994;25(10):1935–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Jaya F, Win MN, Abdullah MR, Abdullah MR, Abdullah JM. Stroke patterns in Northeast Malaysia: a hospital-based prospective study. Neuroepidemiology. 2002;21(1):28–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Broderick JP, Adams HP, Barsan W, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1999;30(4):905–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Rincon F, Mayer SA. Clinical review: critical care management of spontaneous intracerebral hemorrhage. Crit Care. 2008;12(6):237.PubMedCrossRefGoogle Scholar
  11. 11.
    Holloway RG, Witter DM, Lawton KB, Lipscomb J, Samsa G. Inpatient costs of specific cerebrovascular events at five academic medical centers. Neurology. 1996;46(3):854–60.PubMedGoogle Scholar
  12. 12.
    Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF. Lifetime cost of stroke in the United States. Stroke. 1996;27(9):1459–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, Sauerbeck L, Spilker J, Duldner J, Khoury J. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28(1):1–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang J, Doré S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908.PubMedGoogle Scholar
  16. 16.
    Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30(6):1167–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Inaji M, Tomita H, Tone O, Tamaki M, Suzuki R, Ohno K. Chronological changes of perihematomal edema of human intracerebral hematoma. Acta Neurochir Suppl. 2003;86:445–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Cushing H. Some experimental and olinical observations conoerning states of increased intracranial tension. Am J Med Sci. 1902;124:375–400.CrossRefGoogle Scholar
  19. 19.
    Langfitt TW, Weinstein JD, Kassell NF, Gagliardi LJ. Transmission of increased intracranial pressure. II. Within the supratentorial space. J Neurosurg. 1964;21:998–1005.PubMedCrossRefGoogle Scholar
  20. 20.
    Nath FP, Jenkins A, Mendelow AD, Graham DI, Teasdale GM. Early hemodynamic changes in experimental intracerebral hemorrhage. J Neurosurg. 1986;65(5):697–703.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood–brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86(2):272–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang GY, Chen SF, Kinouchi H, Chan PH, Weinstein PR. Edema, cation content, and ATPase activity after middle cerebral artery occlusion in rats. Stroke. 1992;23(9):1331–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Freeman WD, Barrett KM, Bestic JM, Meschia JF, Broderick DF, Brott TG. Computer-assisted volumetric analysis compared with ABC/2 method for assessing warfarin-related intracranial hemorrhage volumes. Neurocrit Care. 2008;9(3):307–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Holmin S, Mathiesen T. Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J Neurosurg. 2000;92(1):108–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Wang H, Reiser G. Thrombin signaling in the brain: the role of protease-activated receptors. Biol Chem. 2003;384(2):193–202.PubMedCrossRefGoogle Scholar
  26. 26.
    Hickenbottom SL, Grotta JC, Strong R, Denner LA, Aronowski J. Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke. 1999;30(11):2472–7. discussion 2477–2478.PubMedCrossRefGoogle Scholar
  27. 27.
    Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke. 2011;42(1):73–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Bullock R, Mendelow AD, Teasdale GM, Graham DI. Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: description of technique, ICP changes and neuropathological findings. Neurol Res. 1984;6(4):184–8.PubMedGoogle Scholar
  29. 29.
    Rynkowski MA, Kim GH, Komotar RJ, et al. A mouse model of intracerebral hemorrhage using autologous blood infusion. Nat Protoc. 2008;3(1):122–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Deinsberger W, Vogel J, Kuschinsky W, Auer LM, Böker DK. Experimental intracerebral hemorrhage: description of a double injection model in rats. Neurol Res. 1996;18(5):475–7.PubMedGoogle Scholar
  31. 31.
    MacLellan CL, Silasi G, Auriat AM, Colbourne F. Rodent models of intracerebral hemorrhage. Stroke. 2010;41(10 Suppl):S95–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21(5):801–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee KR, Colon GP, Betz AL, Keep RF, Kim S, Hoff JT. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg. 1996;84(1):91–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Rodríguez-Yáñez M, Castellanos M. Molecular signatures of course and prognosis of intracerebral hemorrhage. Seminars in Cerebrovascular Diseases and Stroke. 2005;5:178–88.CrossRefGoogle Scholar
  35. 35.
    Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke. 2007;38(2 Suppl):759–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Ducruet AF, Zacharia BE, Hickman ZL, Grobelny BT, Yeh ML, Sosunov SA, Connolly ES. The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol. 2009;219(2):398–403.PubMedCrossRefGoogle Scholar
  37. 37.
    Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89(6):991–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke. 2001;32(1):162–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Huang F-P, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287–93.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakamura T, Xi G, Park J-W, Hua Y, Hoff JT, Keep RF. Holo-transferrin and thrombin can interact to cause brain damage. Stroke. 2005;36(2):348–52.PubMedCrossRefGoogle Scholar
  41. 41.
    Pia HW, Langmaid C, Zierski J. Spontaneous intracerebral haematomas. Berlin: Springer; 1980. p. 415.CrossRefGoogle Scholar
  42. 42.
    Sinar EJ, Mendelow AD, Graham DI, Teasdale GM. Experimental intracerebral hemorrhage: effects of a temporary mass lesion. J Neurosurg. 1987;66(4):568–76.PubMedCrossRefGoogle Scholar
  43. 43.
    Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke. 1998;29(12):2580–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Levine JM, Snider R, Finkelstein D, Gurol ME, Chanderraj R, Smith EE, Greenberg SM, Rosand J. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care. 2007;7(1):58–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Keep RF, Xi G, Hua Y, Xiang J. Clot formation, vascular repair and hematoma resolution after ICH, a coordinating role for thrombin? Acta Neurochir Suppl. 2011;111:71–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee KR, Betz AL, Keep RF, Chenevert TL, Kim S, Hoff JT. Intracerebral infusion of thrombin as a cause of brain edema. J Neurosurg. 1995;83(6):1045–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee KR, Betz AL, Kim S, Keep RF, Hoff JT. The role of the coagulation cascade in brain edema formation after intracerebral hemorrhage. Acta Neurochir (Wien). 1996;138(4):396–400. discussion 400–1.CrossRefGoogle Scholar
  48. 48.
    Kitaoka T, Hua Y, Xi G, Hoff JT, Keep RF. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage. Stroke. 2002;33(12):3012–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Hamada R, Matsuoka H. Antithrombin therapy for intracerebral hemorrhage. Stroke. 2000;31(3):794–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Niclou S, Suidan HS, Brown-Luedi M, Monard D. Expression of the thrombin receptor mRNA in rat brain. Cell Mol Biol (Noisy-le-Grand). 1994;40(3):421–8.Google Scholar
  52. 52.
    Marinissen MJ, Servitja J-M, Offermanns S, Simon MI, Gutkind JS. Thrombin protease-activated receptor-1 signals through Gq- and G13-initiated MAPK cascades regulating c-Jun expression to induce cell transformation. J Biol Chem. 2003;278(47):46814–25.PubMedCrossRefGoogle Scholar
  53. 53.
    Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci USA. 1999;96(20):11023–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Bartha K, Dömötör E, Lanza F, Adam-Vizi V, Machovich R. Identification of thrombin receptors in rat brain capillary endothelial cells. J Cereb Blood Flow Metab. 2000;20(1):175–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64(6):1057–68.PubMedCrossRefGoogle Scholar
  56. 56.
    Zheng G-Q, Wang X-T, Wang X-M, Gao R-R, Zeng X-L, Fu X-L, Wang Y. Long-time course of protease-activated receptor-1 expression after intracerebral hemorrhage in rats. Neurosci Lett. 2009;459(2):62–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Luo W, Wang Y, Reiser G. Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res Rev. 2007;56(2):331–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Maggio N, Shavit E, Chapman J, Segal M. Thrombin induces long-term potentiation of reactivity to afferent stimulation and facilitates epileptic seizures in rat hippocampal slices: toward understanding the functional consequences of cerebrovascular insults. J Neurosci. 2008;28(3):732–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Wang H, Reiser G. The role of the Ca2 + −sensitive tyrosine kinase Pyk2 and Src in thrombin signalling in rat astrocytes. J Neurochem. 2003;84(6):1349–57.PubMedCrossRefGoogle Scholar
  60. 60.
    Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 2006;26(40):10281–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu D-Z, Ander BP, Xu H, Shen Y, Kaur P, Deng W, Sharp FR. Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol. 2010;67(4):526–33.PubMedCrossRefGoogle Scholar
  62. 62.
    Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke. 2007;38(5):1621–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609.PubMedCrossRefGoogle Scholar
  64. 64.
    Sharp F, Liu DZ, Zhan X, Ander BP. Intracerebral hemorrhage injury mechanisms: glutamate neurotoxicity, thrombin, and Src. Acta Neurochir Suppl. 2008;105:43–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Jiang Y, Wu J, Keep RF, Hua Y, Hoff JT, Xi G. Hypoxia-inducible factor-1alpha accumulation in the brain after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2002;22(6):689–96.PubMedCrossRefGoogle Scholar
  66. 66.
    Jiang BH, Agani F, Passaniti A, Semenza GL. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 1997;57(23):5328–35.PubMedGoogle Scholar
  67. 67.
    Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A. Activated pp 60c-Src leads to elevated hypoxia-inducible factor (HIF)-1alpha expression under normoxia. J Biol Chem. 2002;277(45):42919–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–25.PubMedCrossRefGoogle Scholar
  69. 69.
    Tang T, Liu X-J, Zhang Z-Q, Zhou H-J, Luo J-K, Huang J-F, Yang Q-D, Li X-Q. Cerebral angiogenesis after collagenase-induced intracerebral hemorrhage in rats. Brain Res. 2007;1175:134–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Shi W, Wang Z, Pu J, Wang R, Guo Z, Liu C, Sun J, Gao L, Zhou R. Changes of blood–brain barrier permeability following intracerebral hemorrhage and the therapeutic effect of minocycline in rats. Acta Neurochir Suppl. 2011;110(Pt 2):61–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Hayashi T, Noshita N, Sugawara T, Chan PH. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab. 2003;23(2):166–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Jośko J. Cerebral angiogenesis and expression of VEGF after subarachnoid hemorrhage (SAH) in rats. Brain Res. 2003;981(1–2):58–69.PubMedCrossRefGoogle Scholar
  73. 73.
    Lin T-N, Sun S-W, Cheung W-M, Li F, Chang C. Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats. Evaluation with serial magnetic resonance imaging. Stroke. 2002;33(12):2985–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Kimura R, Nakase H, Sakaki T, Taoka T, Tsuji T. Vasogenic edema and VEGF expression in a rat two-vein occlusion model. Acta Neurochir Suppl. 2003;86:213–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang X, Li H, Hu S, Zhang L, Liu C, Zhu C, Liu R, Li C. Brain edema after intracerebral hemorrhage in rats: the role of inflammation. Neurol India. 2006;54(4):402–7.PubMedCrossRefGoogle Scholar
  76. 76.
    van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest. 1999;104(11):1613–20.PubMedCrossRefGoogle Scholar
  77. 77.
    Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS, Sorensen AG, Ivy P, Jain RK, Batchelor TT. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol. 2009;6(4):229–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Wang J, Tsirka SE. Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care. 2005;3(1):77–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats: relationship between blood fractions and brain cell death. Stroke. 2000;31(7):1721–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett. 2000;283(3):230–2.PubMedCrossRefGoogle Scholar
  81. 81.
    Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res. 2000;871(1):57–65.PubMedCrossRefGoogle Scholar
  82. 82.
    Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128(Pt 7):1622–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang J, Doré S. Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage. Neuroscience. 2008;155(4):1133–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Bestué-Cardiel M, Martín-Martínez J, Iturriaga-Heras C, Ara-Callizo JR, Oliveros-Juste A. Leukocytes and primary intracerebral hemorrhage. Rev Neurol. 1999;29(10):968–71.PubMedGoogle Scholar
  85. 85.
    Lee MC, Heaney LM, Jacobson RL, Klassen AC. Cerebrospinal fluid in cerebral hemorrhage and infarction. Stroke. 1975;6(6):638–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Suzuki S, Kelley RE, Dandapani BK, Reyes-Iglesias Y, Dietrich WD, Duncan RC. Acute leukocyte and temperature response in hypertensive intracerebral hemorrhage. Stroke. 1995;26(6):1020–3.PubMedCrossRefGoogle Scholar
  87. 87.
    Leira R, Dávalos A, Silva Y, Gil-Peralta A, Tejada J, Garcia M, Castillo J, Stroke Project Cerebrovascular Diseases Group of the Spanish Neurological Society. Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology. 2004;63(3):461–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Dávalos A, Stroke Project, Cerebrovascular Diseases Group of the Spanish Neurological Society. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke. 2005;36(1):86–91.PubMedCrossRefGoogle Scholar
  89. 89.
    Mayne M, Ni W, Yan HJ, Xue M, Johnston JB, Del Bigio MR, Peeling J, Power C. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke. 2001;32(1):240–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Weiss SJ. Tissue destruction by neutrophils. N Engl J Med. 1989;320(6):365–76.PubMedCrossRefGoogle Scholar
  91. 91.
    Bijli KM, Minhajuddin M, Fazal F, O’Reilly MA, Platanias LC, Rahman A. c-Src interacts with and phosphorylates RelA/p65 to promote thrombin-induced ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L396–404.PubMedCrossRefGoogle Scholar
  92. 92.
    Titova E, Kevil CG, Ostrowski RP, Rojas H, Liu S, Zhang JH, Tang J. Deficiency of CD18 gene reduces brain edema in experimental intracerebral hemorrhage in mice. Acta Neurochir Suppl. 2008;105:85–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Wang J, Rogove AD, Tsirka AE, Tsirka SE. Protective role of tuftsin fragment 1–3 in an animal model of intracerebral hemorrhage. Ann Neurol. 2003;54(5):655–64.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.PubMedCrossRefGoogle Scholar
  95. 95.
    Dickson DW, Mattiace LA, Kure K, Hutchins K, Lyman WD, Brosnan CF. Microglia in human disease, with an emphasis on acquired immune deficiency syndrome. Lab Invest. 1991;64(2):135–56.PubMedGoogle Scholar
  96. 96.
    Wasserman JK, Schlichter LC. Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol. 2007;207(2):227–37.PubMedCrossRefGoogle Scholar
  97. 97.
    Wu J, Hua Y, Keep RF, Schallert T, Hoff JT, Xi G. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res. 2002;953(1–2):45–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Castillo J, Dávalos A, Alvarez-Sabín J, Pumar JM, Leira R, Silva Y, Montaner J, Kase CS. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology. 2002;58(4):624–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Hua Y, Wu J, Keep RF, Nakamura T, Hoff JT, Xi G. Tumor necrosis factor-alpha increases in the brain after intracerebral hemorrhage and thrombin stimulation. Neurosurgery. 2006;58(3):542–50. discussion 542–550.PubMedGoogle Scholar
  100. 100.
    Megyeri P, Abrahám CS, Temesvári P, Kovács J, Vas T, Speer CP. Recombinant human tumor necrosis factor alpha constricts pial arterioles and increases blood–brain barrier permeability in newborn piglets. Neurosci Lett. 1992;148(1–2):137–40.PubMedCrossRefGoogle Scholar
  101. 101.
    Hallenbeck JM. The many faces of tumor necrosis factor in stroke. Nat Med. 2002;8(12):1363–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev. 1999;10(2):119–30.PubMedCrossRefGoogle Scholar
  103. 103.
    López-Cortés L, Marquez-Arbizu R. Cerebrospinal fluid tumor necrosis factor-[alpha], interleukin-1 [beta], interleukin-6, and interleukin-8 as diagnostic markers of cerebrospinal fluid infection in neurosurgical patients. Crit Care Med. 2000;28(1):215–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Lu A, Tang Y, Ran R, Ardizzone TL, Wagner KR, Sharp FR. Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2006;26(2):230–52.PubMedCrossRefGoogle Scholar
  105. 105.
    Gordon CR, Merchant RS, Marmarou A, Rice CD, Marsh JT, Young HF. Effect of murine recombinant interleukin-1 on brain oedema in the rat. Acta Neurochir Suppl. 1990;51:268–70.Google Scholar
  106. 106.
    Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF. Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg. 2001;95(4):680–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Masada T, Hua Y, Xi G, Yang GY, Hoff JT, Keep RF, Nagao S. Overexpression of interleukin-1 receptor antagonist reduces brain edema induced by intracerebral hemorrhage and thrombin. Acta Neurochir Suppl. 2003;86:463–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Bresnihan B. The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid arthritis. Semin Arthritis Rheum. 2001;30(5 Suppl 2):17–20.PubMedCrossRefGoogle Scholar
  109. 109.
    Dziedzic T, Bartus S, Klimkowicz A, Motyl M, Slowik A, Szczudlik A. Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood. Stroke. 2002;33(9):2334–5.PubMedCrossRefGoogle Scholar
  110. 110.
    Wu J, Yang S, Xi G, Song S, Fu G, Keep RF, Hua Y. Microglial activation and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:59–65.PubMedCrossRefGoogle Scholar
  111. 111.
    Suo Z, Wu M, Ameenuddin S, Anderson HE, Zoloty JE, Citron BA, Andrade-Gordon P, Festoff BW. Participation of protease-activated receptor-1 in thrombin-induced microglial activation. J Neurochem. 2002;80(4):655–66.PubMedCrossRefGoogle Scholar
  112. 112.
    Suo Z, Wu M, Citron BA, Gao C, Festoff BW. Persistent protease-activated receptor 4 signaling mediates thrombin-induced microglial activation. J Biol Chem. 2003;278(33):31177–83.PubMedCrossRefGoogle Scholar
  113. 113.
    Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT. Blood–brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:73–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Romanic AM, Madri JA. Extracellular matrix-degrading proteinases in the nervous system. Brain pathology (Zurich, Switzerland). 1994;4(2):145–56.CrossRefGoogle Scholar
  115. 115.
    Yong VW, Power C, Forsyth P, Edwards DR. Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci. 2001;2(7):502–11.PubMedCrossRefGoogle Scholar
  116. 116.
    Séguin CA, Pilliar RM, Madri JA, Kandel RA. TNF-alpha induces MMP2 gelatinase activity and MT1-MMP expression in an in vitro model of nucleus pulposus tissue degeneration. Spine. 2008;33(4):356–65.PubMedCrossRefGoogle Scholar
  117. 117.
    Lee C-W, Lin C-C, Lin W-N, Liang K-C, Luo S-F, Wu C-B, Wang S-W, Yang C-M. TNF-alpha induces MMP-9 expression via activation of Src/EGFR, PDGFR/PI3K/Akt cascade and promotion of NF-kappaB/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2007;292(3):L799–812.PubMedCrossRefGoogle Scholar
  118. 118.
    Han YP, Tuan TL, Wu H, Hughes M, Garner WL. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP. J Cell Sci. 2001;114(Pt 1):131–9.PubMedGoogle Scholar
  119. 119.
    Nee LE, McMorrow T, Campbell E, Slattery C, Ryan MP. TNF-alpha and IL-1beta-mediated regulation of MMP-9 and TIMP-1 in renal proximal tubular cells. Kidney Int. 2004;66(4):1376–86.PubMedCrossRefGoogle Scholar
  120. 120.
    Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG. Tumor necrosis factor-alpha-induced gelatinase B causes delayed opening of the blood–brain barrier: an expanded therapeutic window. Brain Res. 1995;703(1–2):151–5.PubMedCrossRefGoogle Scholar
  121. 121.
    Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, Alvarez-Sabín J. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg. 2003;99(1):65–70.PubMedCrossRefGoogle Scholar
  122. 122.
    Castellazzi M, Tamborino C, De Santis G, Garofano F, Lupato A, Ramponi V, Trentini A, Casetta I, Bellini T, Fainardi E. Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. Acta Neurochir Suppl. 2010;106:137–40.PubMedCrossRefGoogle Scholar
  123. 123.
    Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M, Molina CA, Lo EH, Montaner J. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37(6):1399–406.PubMedCrossRefGoogle Scholar
  124. 124.
    Alvarez-Sabín J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribó M, Santamarina E, Quintana M, Monasterio J, Montaner J. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke. 2004;35(6):1316–22.PubMedCrossRefGoogle Scholar
  125. 125.
    Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood–brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39(4):1121–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53(6):731–42.PubMedCrossRefGoogle Scholar
  127. 127.
    Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res. 2001;893(1–2):104–12.PubMedCrossRefGoogle Scholar
  128. 128.
    Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology. 1997;48(4):921–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab. 2004;24(10):1133–45.PubMedCrossRefGoogle Scholar
  130. 130.
    Tejima E, Zhao B-Q, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, Montaner J, Wang X, Lo EH. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab. 2007;27(3):460–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Hua Y, Xi G, Keep R. Complement C9 accumulation, membrane attack complex (MAC) formation and clusterin upregulation following intracerebral hemorrhage. 1999;19(Suppl. 1):S670Google Scholar
  132. 132.
    Gong Y, Xi GH, Keep RF, Hoff JT, Hua Y. Complement inhibition attenuates brain edema and neurological deficits induced by thrombin. Acta Neurochir Suppl. 2005;95:389–92.PubMedCrossRefGoogle Scholar
  133. 133.
    Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92(6):1016–22.PubMedCrossRefGoogle Scholar
  134. 134.
    Wu G, Huang FP. Effects of venom defibrase on brain edema after intracerebral hemorrhage in rats. Acta Neurochir Suppl. 2005;95:381–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Yang S, Nakamura T, Hua Y, Keep RF, Younger JG, Hoff JT, Xi G. Intracerebral hemorrhage in complement C3-deficient mice. Acta Neurochir Suppl. 2006;96:227–31.PubMedCrossRefGoogle Scholar
  136. 136.
    Yang S, Nakamura T, Hua Y, Keep RF, Younger JG, He Y, Hoff JT, Xi G. The role of complement C3 in intracerebral hemorrhage-induced brain injury. J Cereb Blood Flow Metab. 2006;26(12):1490–5.PubMedCrossRefGoogle Scholar
  137. 137.
    Rynkowski MA, Kim GH, Garrett MC, et al. C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29(1):98–107.PubMedCrossRefGoogle Scholar
  138. 138.
    Nakamura T, Xi G, Hua Y, Schallert T, Hoff JT, Keep RF. Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice. J Cereb Blood Flow Metab. 2004;24(5):487–94.PubMedCrossRefGoogle Scholar
  139. 139.
    Garrett MC, Otten ML, Starke RM, Komotar RJ, Magotti P, Lambris JD, Rynkowski MA, Connolly ES. Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Res. 2009;1298:171–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Daniel Bodmer
    • 1
  • Kerry A. Vaughan
    • 1
  • Brad E. Zacharia
    • 1
    • 2
  • Zachary L. Hickman
    • 1
  • E. Sander Connolly
    • 1
  1. 1.Department of Neurological Surgery, The Neurological InstituteColumbia University College of Physicians and SurgeonsNew YorkUSA
  2. 2.Department of NeurosurgeryColumbia UniversityNew YorkUSA

Personalised recommendations