Translational Stroke Research

, Volume 2, Issue 3, pp 376–381 | Cite as

Low-Power 2-MHz Pulsed-Wave Transcranial Ultrasound Reduces Ischemic Brain Damage in Rats

  • Andrei V. Alexandrov
  • Kristian Barlinn
  • Roger Strong
  • Anne W. Alexandrov
  • Jaroslaw Aronowski
Original Article

Abstract

It is largely unknown whether prolonged insonation with ultrasound impacts the ischemic brain tissue by itself. Our goal was to evaluate safety and the effect of high-frequency ultrasound on infarct volume in rats. Thirty-two Long–Evans rats with permanent middle cerebral and carotid artery occlusions received either 2-MHz ultrasound at two levels of insonation power (128 or 10 mW) or no ultrasound (controls). We measured cerebral hemorrhage, indirect and direct infarct volume as well as edema volume at 24 h. No cerebral hemorrhages were detected in all animals. Exposure to low-power (10 mW) ultrasound resulted in a significantly decreased indirect infarct volume (p = 0.0039), direct infarct volume (p = 0.0031), and brain edema volume (p = 0.01) compared with controls. High-power (128 mW) ultrasound had no significant effects. An additional experiment with India ink showed a greater intravascular penetration of dye into ischemic tissues exposed to low-power ultrasound. Insonation with high-frequency, low-power ultrasound reduces ischemic brain damage in rat. Its effect on edema reduction and possible promotion of microcirculation could be used to facilitate drug and nutrient delivery to ischemic areas.

Keywords

Cerebral ischemia Transcranial ultrasound Brain edema reduction Microcirculation 

References

  1. 1.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.CrossRefGoogle Scholar
  2. 2.
    Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 h after acute ischemic stroke. N Engl J Med. 2008;359:1317–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Kleindorfer D, Lindsell CJ, Brass L, Koroshetz W, Broderick JP. National US estimates of recombinant tissue plasminogen activator use: ICD-9 codes substantially underestimate. Stroke. 2008;39:924–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Alexandrov AV. Ultrasound identification and lysis of clots. Stroke. 2004;35:2722–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Blinc A, Francis CW, Trudnowski JL, Carstensen EL. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood. 1993;81:2636–43.PubMedGoogle Scholar
  6. 6.
    Holland CK, Vaidya SS, Datta S, Coussios CC, Shaw GJ. Ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thromb Res. 2008;121:663–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Saguchi T, Onoue H, Urashima M, Ishibashi T, Abe T, Furuhata H. Effective and safe conditions of low-frequency transcranial ultrasound thrombolysis for acute ischemic stroke. Neurologic and histologic evaluation in a rat middle cerebral artery stroke model. Stroke. 2008;39:1007–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Suchkova V, Siddiqi FN, Carstensen EL, Dalecki D, Child S, Francis CW. Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation. 1998;98:1030–5.PubMedGoogle Scholar
  9. 9.
    Daffertshofer M, Huang Z, Fatar M, et al. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke. Neurosci Lett. 2004;361:115–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol. 1995;21:419–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Datta S, Coussios CC, McAdory LE, et al. Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol. 2006;32:1257–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Alexandrov AV, Demchuk AM, Felberg RA, et al. High rate of complete recanalization and dramatic clinical recovery during TPA infusion when continuously monitored by 2 MHz transcranial Doppler monitoring. Stroke. 2000;31:610–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Eggers J, Koch B, Meyer K, König I, Seidel G. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann Neurol. 2003;53:797–800.PubMedCrossRefGoogle Scholar
  14. 14.
    Alexandrov AV, Molina CA, Grotta JC, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004;351:2170–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Eggers J, Seidel G, Koch B, König IR. Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA. Neurology. 2005;64:1052–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Cintas P, Le Traon AP, Larrue V. High rate of recanalization of middle cerebral artery occlusion during 2-MHz transcranial color-coded Doppler continuous monitoring without thrombolytic drug. Stroke. 2002;33:626–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Fatar M, Stroick M, Griebe M, et al. Effect of combined ultrasound and microbubbles treatment in an experimental model of cerebral ischemia. Ultrasound Med Biol. 2008;34:1414–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Hitchcock KE, Holland CK. Ultrasound-assisted thrombolysis for stroke therapy: better thrombus break-up with bubbles. Stroke. 2010;41:50–3.CrossRefGoogle Scholar
  19. 19.
    US National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publication No 85–23, revised 1996)Google Scholar
  20. 20.
    Aronowski J, Samways E, Strong R, Rhoades HM, Grotta JC. An alternative method for the quantitation of neuronal damage after experimental middle cerebral artery occlusion in rats: analysis of behavioral deficit. J Cereb Blood Flow Metab. 1996;16:705–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Alexandrov AV, Sloan MA, Wong LK, et al. Practice standards for transcranial Doppler ultrasound: part I-test performance. American Society of Neuroimaging Practice Guidelines Committee. J Neuroimaging. 2007;17:11–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Aronowski J, Ostrow P, Samways E, Strong R, Zivin JA, Grotta JC. A graded bioassay for determination of brain rescue from experimental acute ischemia. Stroke. 1994;25:2235–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsivgoulis G, Eggers J, Ribo M, et al. Safety and efficacy of ultrasound- enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke. 2010;41:280–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Schneider F, Gerriets T, Walberer M, Mueller C, Rolke R, Eicke BM, et al. Brain edema and intracerebral necrosis caused by transcranial low-frequency 20-kHz ultrasound: a safety study in rats. Stroke. 2006;37:1301–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilhelm-Schwenkmezger T, Pittermann P, Zajonz K, Kempski O, Dieterich M, Nedelmann M. Therapeutic application of 20-kHz transcranial ultrasound in an embolic middle cerebral artery occlusion model in rats: safety concerns. Stroke. 2007;38:1031–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Grolimund P. Transmission of ultrasound through the temporal bone. In: Aaslid R, editor. Transcranial Doppler sonography. Wien: Springer; 1986. p. 10–21.Google Scholar
  27. 27.
    Pfaffenberger S, Devcic-Kuhar B, Kollmann C, et al. Can a commercial diagnostic ultrasound device accelerate thrombolysis? An in vitro skull model. Stroke. 2005;36:124–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Steffen W, Cumberland D, Gaines P, et al. Catheter-delivered high intensity, low frequency ultrasound induces vasdodilation in vivo. Eur Heart J. 1994;15:369–76.PubMedGoogle Scholar
  29. 29.
    Fischell TA, Abbas MA, Grant GW, Siegel RJ. Ultrasound energy: effects on vascular function and integrity. Circulation. 1991;84:1783–95.PubMedGoogle Scholar
  30. 30.
    Suchkova VN, Baggs RB, Francis CW. Effect of 40-kHz ultrasound on acute thrombotic ischemia in a rabbit femoral artery thrombosis model: enhancement of thrombolysis and improvement in capillary muscle perfusion. Circulation. 2000;101:2296–301.PubMedGoogle Scholar
  31. 31.
    Suchkova VN, Baggs RB, Sahni SK, Francis CW. Ultrasound improves tissue perfusion in ischemic tissue through a nitric oxide dependent mechanism. Thromb Haemost. 2002;88:865–70.PubMedGoogle Scholar
  32. 32.
    Davics PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75:519–60.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Andrei V. Alexandrov
    • 1
    • 2
  • Kristian Barlinn
    • 1
  • Roger Strong
    • 2
  • Anne W. Alexandrov
    • 1
    • 2
  • Jaroslaw Aronowski
    • 2
  1. 1.Department of Neurology, Comprehensive Stroke CenterUniversity of Alabama HospitalBirminghamUSA
  2. 2.Stroke ProgramUniversity of Texas-Houston Medical SchoolHoustonUSA

Personalised recommendations