Advertisement

Translational Stroke Research

, Volume 2, Issue 3, pp 316–327 | Cite as

Hyperbaric Oxygen for Cerebral Vasospasm and Brain Injury Following Subarachnoid Hemorrhage

  • Robert P. Ostrowski
  • John H. ZhangEmail author
Review

Abstract

The impact of acute brain injury and delayed neurological deficits due to cerebral vasospasm (CVS) are major determinants of outcomes after subarachnoid hemorrhage (SAH). Although hyperbaric oxygen (HBO) had been used to treat patients with SAH, the supporting evidence and underlying mechanisms have not been systematically reviewed. In the present paper, the overview of studies of HBO for cerebral vasospasm is followed by a discussion of HBO molecular mechanisms involved in the protection against SAH-induced brain injury and even, as hypothesized, in attenuating vascular spasm alone. Faced with the paucity of information as to what degree HBO is capable of antagonizing vasospasm after SAH, the authors postulate that the major beneficial effects of HBO in SAH include a reduction of acute brain injury and combating brain damage caused by CVS. Consequently, authors reviewed the effects of HBO on SAH-induced hypoxic signaling and other mechanisms of neurovascular injury. Moreover, authors hypothesize that HBO administered after SAH may “precondition” the brain against the detrimental sequelae of vasospasm. In conclusion, the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAH; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.

Keywords

Intracranial aneurysm Subarachnoid hemorrhage Cerebral vasospasm Neurological deficits Hyperbaric oxygen Neuroprotection 

Notes

Acknowledgments

This study is partially supported by grants from National Institutes of Health: NS53407, NS43338, and HD43120 to J.H. Zhang.

Conflict of Interest

The authors declare no conflict of interest pertaining to the submitted work.

References

  1. 1.
    Keyrouz SG, Diringer MN. Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care. 2007;11(4):220.PubMedCrossRefGoogle Scholar
  2. 2.
    Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3(5):256–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39(11):3015–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Vajkoczy P, Meyer B, Weidauer S, Raabe A, Thome C, Ringel F, et al. Clazosentan (AXV-034343), a selective endothelin A receptor antagonist, in the prevention of cerebral vasospasm following severe aneurysmal subarachnoid hemorrhage: results of a randomized, double-blind, placebo-controlled, multicenter phase IIa study. J Neurosurg. 2005;103(1):9–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Hansen-Schwartz J, Vajkoczy P, Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci. 2007;28(6):252–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28(4):399–414.PubMedCrossRefGoogle Scholar
  7. 7.
    Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(8):916–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Stuart RM, Helbok R, Kurtz P, Schmidt M, Fernandez L, Lee K et al. High-dose intra-arterial verapamil for the treatment of cerebral vasospasm after subarachnoid hemorrhage: prolonged effects on hemodynamic parameters and brain metabolism. Neurosurgery. 2011 (in press).Google Scholar
  9. 9.
    Zubkov AY, Rabinstein AA. Medical management of cerebral vasospasm: present and future. Neurol Res. 2009;31(6):626–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Dankbaar JW, Slooter AJ, Rinkel GJ, Schaaf IC. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14(1):R23.PubMedCrossRefGoogle Scholar
  11. 11.
    Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31(2):151–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Kasuya H. Clinical trial of nicardipine prolonged-release implants for preventing cerebral vasospasm: multicenter cooperative study in Tokyo. Acta Neurochir Suppl. 2011;110(2):165–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Ostrowski RP, Colohan AR, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25(5):554–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Kohshi K, Yokota A, Konda N, Kinoshita Y, Kajiwara H. Intracranial pressure responses during hyperbaric oxygen therapy. Neurol Med Chir (Tokyo). 1991;31(9):575–81.CrossRefGoogle Scholar
  15. 15.
    Kohshi K, Yokota A, Konda N, Munaka M, Yasukouchi H. Hyperbaric oxygen therapy adjunctive to mild hypertensive hypervolemia for symptomatic vasospasm. Neurol Med Chir (Tokyo). 1993;33(2):92–9.CrossRefGoogle Scholar
  16. 16.
    Isakov I, Pravdenkova SV, Shchelkovskii VN. [Hyperbaric oxygenation in ruptured cerebral aneurysms during the postoperative period]. Zh Vopr Neirokhir Im NN Burdenko. 1985;(3):17–21.Google Scholar
  17. 17.
    Levina OA, Romasenko MV, Krylov V. Therapeutic effects of hyperbaric oxygenation (HBO) on acute cerebral ischemia in patients after intracranial aneurysms clipping. Eur J Underw Hyperb Med. 2002;3:83.Google Scholar
  18. 18.
    Ohta H, Suzuki E, Hinuma Y, Kawamura S, Nemoto M, Hadeishi H. Effects of hyperoxia, glycerol and ventricular drainage on ICP and CBF in patients with increased ICP due to CSF circulatory-absorbance disturbance. No To Shinkei. 1987;39(3):273–9.PubMedGoogle Scholar
  19. 19.
    Kawamura S, Ohta H, Yasui N, Nemoto M, Hinuma Y, Suzuki E. Effects of hyperbaric oxygenation in patients with subarachnoid hemorrhage. J Hyperb Med. 1988;3:243–56.Google Scholar
  20. 20.
    Ugriumov VM, Elinskii MP, Rafikov AM, Kesaev SA. [Hyperbaric oxygenation in the complex treatment of patients with aneurysms of the cerebral vessels]. Zh Vopr Neirokhir Im NN Burdenko. 1980;(4):49–54.Google Scholar
  21. 21.
    Kitaoka K, Nakagawa Y, Abe H, Satoh M, Iwakuma T. Hyperbaric oxygenation for the mental conditions following surgery of aneurysm of the anterior communicating artery. Hokkaido Igaku Zasshi. 1983;58(2):154–61.PubMedGoogle Scholar
  22. 22.
    Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Simvastatin treatment duration and cognitive preservation in experimental subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2009;21(4):326–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Sen J, Belli A, Albon H, Morgan L, Petzold A, Kitchen N. Triple-H therapy in the management of aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2003;2(10):614–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Walid SM, Zaytseva NV. Quadruple H therapy for vasospasm. Ann Indian Acad Neurol. 2009;12:22–4.PubMedGoogle Scholar
  25. 25.
    Mchedlishvili G, Varazashvili M, Mamaladze A, Momtselidze N. Blood flow structuring and its alterations in capillaries of the cerebral cortex. Microvasc Res. 1997;53(3):201–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Dhar R, Zazulia AR, Videen TO, Zipfel GJ, Derdeyn CP, Diringer MN. Red blood cell transfusion increases cerebral oxygen delivery in anemic patients with subarachnoid hemorrhage. Stroke. 2009;40(9):3039–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Kocaogullar Y, Ustun ME, Avci E, Karabacakoglu A, Fossett D. The role of hyperbaric oxygen in the management of subarachnoid hemorrhage. Intensive Care Med. 2004;30(1):141–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Imperatore F, Cuzzocrea S, Luongo C, Liguori G, Scafuro A, De Angelis A, et al. Hyperbaric oxygen therapy prevents vascular derangement during zymosan-induced multiple-organ-failure syndrome. Intensive Care Med. 2004;30(6):1175–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang ZX, Kang ZM, Gu GJ, Peng GN, Yun L, Tao HY, et al. Therapeutic effects of hyperbaric oxygen in a rat model of endothelin-1-induced focal cerebral ischemia. Brain Res. 2007;1153:204–13.PubMedCrossRefGoogle Scholar
  30. 30.
    Sharkey J, Butcher SP, Kelly JS. Endothelin-1 induced middle cerebral artery occlusion: pathological consequences and neuroprotective effects of MK801. J Auton Nerv Syst. 1994;49(Suppl):S177–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Gaetani P, Baena R, Grignani G, Spanu G, Pacchiarini L, Paoletti P. Endothelin and aneurysmal subarachnoid haemorrhage: a study of subarachnoid cisternal cerebrospinal fluid. J Neurol Neurosurg Psychiatry. 1994;57(1):66–72.PubMedCrossRefGoogle Scholar
  32. 32.
    Hansen-Schwartz J, Ansar S, Edvinsson L. Cerebral vasoconstriction after subarachnoid hemorrhage—role of changes in vascular receptor phenotype. Front Biosci. 2008;13:2160–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen-Schwartz J, Hoel NL, Zhou M, Xu CB, Svendgaard NA, Edvinsson L. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries. Neurosurgery. 2003;52(5):1188–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Edvinsson L. Cerebrovascular endothelin receptor upregulation in cerebral ischemia. Curr Vasc Pharmacol. 2009;7(1):26–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Rothoerl RD, Ringel F. Molecular mechanisms of cerebral vasospasm following aneurysmal SAH. Neurol Res. 2007;29(7):636–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Hirata Y, Yoshimi H, Takaichi S, Yanagisawa M, Masaki T. Binding and receptor down-regulation of a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. FEBS Lett. 1988;239(1):13–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Lan C, Das D, Wloskowicz A, Vollrath B. Endothelin-1 modulates hemoglobin-mediated signaling in cerebrovascular smooth muscle via RhoA/Rho kinase and protein kinase C. Am J Physiol Heart Circ Physiol. 2004;286(1):H165–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Miao L, Dai Y, Zhang J. Mechanism of RhoA/Rho kinase activation in endothelin-1-induced contraction in rabbit basilar artery. Am J Physiol Heart Circ Physiol. 2002;283(3):H983–9.PubMedGoogle Scholar
  39. 39.
    Zhou C, Li Y, Nanda A, Zhang JH. HBO suppresses Nogo-A, Ng-R, or RhoA expression in the cerebral cortex after global ischemia. Biochem Biophys Res Commun. 2003;309(2):368–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Sheth MV, Goodman BE, Friese JL, Eyster KM. Protein kinase and phosphatase activity in the lungs of normoxic versus hyperoxic rats. Exp Lung Res. 1997;23(6):475–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang X, Wang Y, Kim HP, Choi AM, Ryter SW. FLIP inhibits endothelial cell apoptosis during hyperoxia by suppressing Bax. Free Radic Biol Med. 2007;42(10):1599–609.PubMedCrossRefGoogle Scholar
  42. 42.
    Laher I, Zhang JH. Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab. 2001;21(8):887–906.PubMedCrossRefGoogle Scholar
  43. 43.
    Koide M, Nishizawa S, Ohta S, Yokoyama T, Namba H. Chronological changes of the contractile mechanism in prolonged vasospasm after subarachnoid hemorrhage: from protein kinase C to protein tyrosine kinase. Neurosurgery. 2002;51(6):1468–74.PubMedGoogle Scholar
  44. 44.
    Tang H, Hao Q, Rutherford SA, Low B, Zhao ZJ. Inactivation of SRC family tyrosine kinases by reactive oxygen species in vivo. J Biol Chem. 2005;280(25):23918–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Kusaka G, Kimura H, Kusaka I, Perkins E, Nanda A, Zhang JH. Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg. 2003;99(2):383–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamaguchi M, Zhou C, Nanda A, Zhang JH. Ras protein contributes to cerebral vasospasm in a canine double-hemorrhage model. Stroke. 2004;35(7):1750–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Yatsushige H, Yamaguchi-Okada M, Zhou C, Calvert JW, Cahill J, Colohan AR, et al. Inhibition of c-Jun N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. Acta Neurochir Suppl. 2008;104:27–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Nosko M, Weir BK, Lunt A, Grace M, Allen P, Mielke B. Effect of clot removal at 24 hours on chronic vasospasm after SAH in the primate model. J Neurosurg. 1987;66(3):416–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Crowley RW, Medel R, Kassell NF, Dumont AS. New insights into the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage. Drug Discov Today. 2008;13(5–6):254–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Guney O, Erdi F, Esen H, Kiyici A, Kocaogullar Y. N-acetylcysteine prevents vasospasm after subarachnoid hemorrhage. Surg Neurol. 2010;73:42–9.Google Scholar
  51. 51.
    Munakata A, Ohkuma H, Shimamura N. Effect of a free radical scavenger, edaravone, on free radical reactions: related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Acta Neurochir Suppl. 2011;110(2):17–22.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura K, Koga Y, Sakai H, Homma K, Ikebe M. cGMP-dependent relaxation of smooth muscle is coupled with the change in the phosphorylation of myosin phosphatase. Circ Res. 2007;101(7):712–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Kehl F, Cambj-Sapunar L, Maier KG, Miyata N, Kametani S, Okamoto H, et al. 20-HETE contributes to the acute fall in cerebral blood flow after subarachnoid hemorrhage in the rat. Am J Physiol Heart Circ Physiol. 2002;282(4):H1556–65.PubMedGoogle Scholar
  54. 54.
    Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424.PubMedCrossRefGoogle Scholar
  55. 55.
    Ostrowski RP, Tang J, Zhang JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke. 2006;37(5):1314–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Kim DE, Suh YS, Lee MS, Kim KY, Lee JH, Lee HS, et al. Vascular NAD(P)H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke. 2002;33(11):2687–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Zheng JS, Zhan RY, Zheng SS, Zhou YQ, Tong Y, Wan S. Inhibition of NADPH oxidase attenuates vasospasm after experimental subarachnoid hemorrhage in rats. Stroke. 2005;36(5):1059–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Matsubara M, Hayashi N, Jing T, Titani K. Regulation of endothelial nitric oxide synthase by protein kinase C. J Biochem. 2003;133(6):773–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Hink J, Thom SR, Simonsen U, Rubin I, Jansen E. Vascular reactivity and endothelial NOS activity in rat thoracic aorta during and after hyperbaric oxygen exposure. Am J Physiol Heart Circ Physiol. 2006;291(4):H1988–98.PubMedCrossRefGoogle Scholar
  60. 60.
    Elayan IM, Axley MJ, Prasad PV, Ahlers ST, Auker CR. Effect of hyperbaric oxygen treatment on nitric oxide and oxygen free radicals in rat brain. J Neurophysiol. 2000;83(4):2022–9.PubMedGoogle Scholar
  61. 61.
    Chavko M, Braisted JC, Outsa NJ, Harabin AL. Role of cerebral blood flow in seizures from hyperbaric oxygen exposure. Brain Res. 1998;791(1–2):75–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61(1):62–97.PubMedCrossRefGoogle Scholar
  63. 63.
    Qin Z, Xi G, Keep RF, Silbergleit R, He Y, Hua Y. Hyperbaric oxygen for experimental intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:113–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24(4):419–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J. Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surg Neurol. 2000;53(3):260–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Kimura H, Gules I, Meguro T, Zhang JH. Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Res. 2003;990(1–2):148–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Iseda K, Ono S, Onoda K, Satoh M, Manabe H, Nishiguchi M, et al. Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg. 2007;107(1):128–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang Q, Chang Q, Cox RA, Gong X, Gould LJ. Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J Invest Dermatol. 2008;128(8):2102–12.PubMedGoogle Scholar
  69. 69.
    Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann NY Acad Sci. 2010;1197:178–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Tompach PC, Lew D, Stoll JL. Cell response to hyperbaric oxygen treatment. Int J Oral Maxillofac Surg. 1997;26(2):82–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139–47.PubMedCrossRefGoogle Scholar
  72. 72.
    Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery. 2003;53(1):123–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, et al. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2009;40(7):2519–25.PubMedCrossRefGoogle Scholar
  74. 74.
    Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, et al. Endothelin-1 in subarachnoid hemorrhage: an acute-phase reactant produced by cerebrospinal fluid leukocytes. Stroke. 2000;31(12):2971–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Takeuchi H, Tanabe M, Okamoto H, Yamazaki M. Effects of thromboxane synthetase inhibitor (RS-5186) on experimentally-induced cerebral vasospasm. Neurol Res. 1999;21(5):513–6.PubMedGoogle Scholar
  76. 76.
    Satoh S, Suzuki Y, Harada T, Ikegaki I, Asano T, Shibuya M, et al. The role of platelets in the development of cerebral vasospasm. Brain Res Bull. 1991;27(5):663–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Prunell GF, Svendgaard NA, Alkass K, Mathiesen T. Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005;56(5):1082–92.PubMedGoogle Scholar
  78. 78.
    Alex J, Laden G, Cale AR, Bennett S, Flowers K, Madden L, et al. Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass: a prospective randomized double-blind trial. J Thorac Cardiovasc Surg. 2005;130(6):1623–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Lin CL, Dumont AS, Calisaneller T, Kwan AL, Hwong SL, Lee KS. Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage-induced cerebral vasospasm. Surg Neurol. 2005;64(3):201–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Bavbek M, Polin R, Kwan AL, Arthur AS, Kassell NF, Lee KS. Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke. 1998;29(9):1930–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF, et al. Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg. 1998;89(4):559–67.PubMedCrossRefGoogle Scholar
  82. 82.
    Buras JA, Stahl GL, Svoboda KK, Reenstra WR. Hyperbaric oxygen downregulates ICAM-1 expression induced by hypoxia and hypoglycemia: the role of NOS. Am J Physiol Cell Physiol. 2000;278(2):C292–302.PubMedGoogle Scholar
  83. 83.
    Gunther A, Kuppers-Tiedt L, Schneider PM, Kunert I, Berrouschot J, Schneider D, et al. Reduced infarct volume and differential effects on glial cell activation after hyperbaric oxygen treatment in rat permanent focal cerebral ischaemia. Eur J Neurosci. 2005;21(11):3189–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Liu JR, Zhao Y, Patzer A, Staak N, Boehm R, Deuschl G, et al. The JNK-inhibitor XG-102 enhances the neuroprotection of hyperbaric oxygen after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol. 2010;36:211–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Cahill J, Calvert JW, Solaroglu I, Zhang JH. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage. Stroke. 2006;37(7):1868–74.PubMedCrossRefGoogle Scholar
  86. 86.
    Kozniewska E, Michalik R, Rafalowska J, Gadamski R, Walski M, Frontczak-Baniewicz M, et al. Mechanisms of vascular dysfunction after subarachnoid hemorrhage. J Physiol Pharmacol. 2006;57 Suppl 11:145–60.PubMedGoogle Scholar
  87. 87.
    Grote E, Hassler W. The critical first minutes after subarachnoid hemorrhage. Neurosurgery. 1988;22(4):654–61.PubMedCrossRefGoogle Scholar
  88. 88.
    Hoffman WE, Wheeler P, Edelman G, Charbel FT, Torres NJ, Ausman JI. Hypoxic brain tissue following subarachnoid hemorrhage. Anesthesiology. 2000;92(2):442–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Hishikawa T, Ono S, Ogawa T, Tokunaga K, Sugiu K, Date I. Effects of deferoxamine-activated hypoxia-inducible factor-1 on the brainstem after subarachnoid hemorrhage in rats. Neurosurgery. 2008;62(1):232–40.PubMedCrossRefGoogle Scholar
  90. 90.
    Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiol Bethesda. 2009;24:97–106.CrossRefGoogle Scholar
  91. 91.
    Schmidt-Kastner R, Aguirre-Chen C, Kietzmann T, Saul I, Busto R, Ginsberg MD. Nuclear localization of the hypoxia-regulated pro-apoptotic protein BNIP3 after global brain ischemia in the rat hippocampus. Brain Res. 2004;1001(1–2):133–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Jeon H, Ai J, Sabri M, Tariq A, Shang X, Chen G, et al. Neurological and neurobehavioral assessment of experimental subarachnoid hemorrhage. BMC Neurosci. 2009;10:103.PubMedCrossRefGoogle Scholar
  93. 93.
    Cahill J, Calvert JW, Marcantonio S, Zhang JH. p53 may play an orchestrating role in apoptotic cell death after experimental subarachnoid hemorrhage. Neurosurgery. 2007;60(3):531–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Yan J, Chen C, Lei J, Yang L, Wang K, Liu J, et al. 2-Methoxyestradiol reduces cerebral vasospasm after 48 hours of experimental subarachnoid hemorrhage in rats. Exp Neurol. 2006;202(2):348–56.PubMedCrossRefGoogle Scholar
  95. 95.
    Yan JH, Yang XM, Chen CH, Hu Q, Zhao J, Shi XZ, et al. Pifithrin-alpha reduces cerebral vasospasm by attenuating apoptosis of endothelial cells in a subarachnoid haemorrhage model of rat. Chin Med J Engl. 2008;121(5):414–9.PubMedGoogle Scholar
  96. 96.
    Calvert JW, Cahill J, Yamaguchi-Okada M, Zhang JH. Oxygen treatment after experimental hypoxia–ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J Appl Physiol. 2006;101(3):853–65.PubMedCrossRefGoogle Scholar
  97. 97.
    Tjarnstrom J, Holmdahl L, Falk P, Falkenberg M, Arnell P, Risberg B. Effects of hyperbaric oxygen on expression of fibrinolytic factors of human endothelium in a simulated ischaemia/reperfusion situation. Scand J Clin Lab Invest. 2001;61(7):539–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Sehba FA, Mostafa G, Friedrich Jr V, Bederson JB. Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg. 2005;102(6):1094–100.PubMedCrossRefGoogle Scholar
  99. 99.
    Padgaonkar VA, Giblin FJ, Fowler K, Leverenz VR, Reddan JR, Dziedzic DC. Heme oxygenase synthesis is induced in cultured lens epithelium by hyperbaric oxygen or puromycin. Exp Eye Res. 1997;65(3):435–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Chang KY, Tsai PS, Huang TY, Wang TY, Yang S, Huang CJ. HO-1 mediates the effects of HBO pretreatment against sepsis. J Surg Res. 2006;136(1):143–53.PubMedCrossRefGoogle Scholar
  101. 101.
    Pearl JD, Macdonald RL. Vasospasm after aneurysmal subarachnoid hemorrhage: need for further study. Acta Neurochir Suppl. 2008;105:207–10.PubMedCrossRefGoogle Scholar
  102. 102.
    Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132(Pt 7):1866–81.PubMedCrossRefGoogle Scholar
  103. 103.
    Kleeberg J, Petzold GC, Major S, Dirnagl U, Dreier JP. ET-1 induces cortical spreading depression via activation of the ETA receptor/phospholipase C pathway in vivo. Am J Physiol Heart Circ Physiol. 2004;286(4):H1339–46.PubMedCrossRefGoogle Scholar
  104. 104.
    Balestrino M, Young J, Aitken P. Block of (Na+,K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res. 1999;838(1–2):37–44.PubMedCrossRefGoogle Scholar
  105. 105.
    Yufu K, Itoh T, Edamatsu R, Mori A, Hirakawa M. Effect of hyperbaric oxygenation on the Na+, K(+)-ATPase and membrane fluidity of cerebrocortical membranes after experimental subarachnoid hemorrhage. Neurochem Res. 1993;18(9):1033–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Titova E, Ostrowski RP, Zhang JH, Tang J. Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res. 2009;31(6):568–81.PubMedCrossRefGoogle Scholar
  107. 107.
    Li Y, Zhou C, Calvert JW, Colohan AR, Zhang JH. Multiple effects of hyperbaric oxygen on the expression of HIF-1 alpha and apoptotic genes in a global ischemia–hypotension rat model. Exp Neurol. 2005;191(1):198–210.PubMedCrossRefGoogle Scholar
  108. 108.
    Gu GJ, Li YP, Peng ZY, Xu JJ, Kang ZM, Xu WG, et al. Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol. 2008;104(4):1185–91.PubMedCrossRefGoogle Scholar
  109. 109.
    Cash TP, Pan Y, Simon MC. Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med. 2007;43(9):1219–25.PubMedCrossRefGoogle Scholar
  110. 110.
    Jones NM, Lee EM, Brown TG, Jarrott B, Beart PM. Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain. Neurosci Lett. 2006;404(1–2):72–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen W, Ostrowski RP, Obenaus A, Zhang JH. Prodeath or prosurvival: two facets of hypoxia inducible factor-1 in perinatal brain injury. Exp Neurol. 2009;216(1):7–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Halterman MW, Miller CC, Federoff HJ. Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci. 1999;19(16):6818–24.PubMedGoogle Scholar
  113. 113.
    Grasso G. An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage. Brain Res Brain Res Rev. 2004;44(1):49–63.PubMedCrossRefGoogle Scholar
  114. 114.
    Jahromi BS, Aihara Y, Ai J, Zhang ZD, Nikitina E, Macdonald RL. Voltage-gated K+ channel dysfunction in myocytes from a dog model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2008;28(4):797–811.PubMedCrossRefGoogle Scholar
  115. 115.
    Sobey CG. Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy. Clin Exp Pharmacol Physiol. 2001;28(11):926–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Ishiguro M, Morielli AD, Zvarova K, Tranmer BI, Penar PL, Wellman GC. Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Circ Res. 2006;99(11):1252–60.PubMedCrossRefGoogle Scholar
  117. 117.
    Jahromi BS, Aihara Y, Ai J, Zhang ZD, Weyer G, Nikitina E, et al. Temporal profile of potassium channel dysfunction in cerebrovascular smooth muscle after experimental subarachnoid haemorrhage. Neurosci Lett. 2008;440(1):81–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Lou M, Chen Y, Ding M, Eschenfelder CC, Deuschl G. Involvement of the mitochondrial ATP-sensitive potassium channel in the neuroprotective effect of hyperbaric oxygenation after cerebral ischemia. Brain Res Bull. 2006;69(2):109–16.PubMedCrossRefGoogle Scholar
  119. 119.
    Colantuono G, Tiravanti EA, Di Venosa N, Cazzato A, Rastaldo R, Cagiano R, et al. Hyperoxia confers myocardial protection in mechanically ventilated rats through the generation of free radicals and opening of mitochondrial ATP-sensitive potassium channels. Clin Exp Pharmacol Physiol. 2008;35(1):64–71.PubMedCrossRefGoogle Scholar
  120. 120.
    Parekh AB, Putney Jr JW. Store-operated calcium channels. Physiol Rev. 2005;85(2):757–810.PubMedCrossRefGoogle Scholar
  121. 121.
    Zuccarello M, Boccaletti R, Tosun M, Rapoport RM. Role of extracellular Ca2+ in subarachnoid hemorrhage-induced spasm of the rabbit basilar artery. Stroke. 1996;27(10):1896–902.PubMedCrossRefGoogle Scholar
  122. 122.
    Veltkamp R, Bieber K, Wagner S, Beynon C, Siebing DA, Veltkamp C, et al. Hyperbaric oxygen reduces basal lamina degradation after transient focal cerebral ischemia in rats. Brain Res. 2006;1076(1):231–7.PubMedCrossRefGoogle Scholar
  123. 123.
    McGirt MJ, Lynch JR, Blessing R, Warner DS, Friedman AH, Laskowitz DT. Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;51(5):1128–34.PubMedCrossRefGoogle Scholar
  124. 124.
    Ostrowski RP, Jadhav V, Chen W, Zhang JH. Reduced matrix metalloproteinase-9 activity and cell death after global ischemia in the brain preconditioned with hyperbaric oxygen. Acta Neurochir Suppl. 2010;106:47–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412.PubMedCrossRefGoogle Scholar
  126. 126.
    Keep RF, Wang MM, Xiang J, Hua Y, Xi G. Is there a place for cerebral preconditioning in the clinic? Transl Stroke Res. 2010;1(1):4–18.PubMedCrossRefGoogle Scholar
  127. 127.
    Gidday JM. Pharmacologic preconditioning: translating the promise. Transl Stroke Res. 2010;1(1):19–30.PubMedCrossRefGoogle Scholar
  128. 128.
    Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007;27(27):7083–93.PubMedCrossRefGoogle Scholar
  129. 129.
    Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones. 2010;15:431–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Lee CC, Chen SC, Tsai SC, Wang BW, Liu YC, Lee HM, et al. Hyperbaric oxygen induces VEGF expression through ERK, JNK and c-Jun/AP-1 activation in human umbilical vein endothelial cells. J Biomed Sci. 2006;13(1):143–56.PubMedCrossRefGoogle Scholar
  131. 131.
    Sato H, Bolli R, Rokosh GD, Bi Q, Dai S, Shirk G, et al. The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. Am J Physiol Heart Circ Physiol. 2007;293(4):H2557–64.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang N, Gao G, Bu X, Han S, Fang L, Li J. Neuron-specific phosphorylation of c-Jun N-terminal kinase increased in the brain of hypoxic preconditioned mice. Neurosci Lett. 2007;423(3):219–24.PubMedCrossRefGoogle Scholar
  133. 133.
    Granziera C, Thevenet J, Price M, Wiegler K, Magistretti PJ, Badaut J, et al. Thrombin-induced ischemic tolerance is prevented by inhibiting c-Jun N-terminal kinase. Brain Res. 2007;1148:217–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physiology and PharmacologyLoma Linda UniversityLoma LindaUSA
  2. 2.Department of AnesthesiologyLoma Linda University Medical CenterLoma LindaUSA
  3. 3.Department of NeurosurgeryLoma Linda University Medical CenterLoma LindaUSA

Personalised recommendations