Translational Stroke Research

, Volume 2, Issue 2, pp 144–151 | Cite as

Infratentorial Strokes for Posterior Circulation Folks: Clinical Correlations for Current Translational Therapeutics

  • Tim Lekic
  • Paul R. Krafft
  • Jacqueline S. Coats
  • Andre Obenaus
  • Jiping Tang
  • John H. Zhang


Approximately 20% of all strokes will occur in the infratentorial brain. This is within the vascular territory of the posterior vascular circulation. Very few clinical specifics are known about the therapeutic needs of this patient sub-population. Most evidence-based practices are founded from research about the treatment of anterior circulatory stroke. As a consequence, little is known about how stroke in the infratentorial brain region would require a different approach. We characterized the neurovascular features of infratentorial stroke, pathophysiological responses, and experimental models for further translational study.


Experimental models Stroke Infratentorial Posterior circulation 



This review was partially supported by a grant from NIH NS53407 to John H. Zhang. The neuroimaging support was provided in part by a NASA cooperative agreement (NCCQ-XX) to Loma Linda University. The authors wish to thank Pete Hayes for assistance with animal imaging.


  1. 1.
    Caplan L. Posterior circulation ischemia: then, now, and tomorrow. The Thomas Willis Lecture-2000. Stroke. 2000;31(8):2011–23.PubMedGoogle Scholar
  2. 2.
    Belden JR, Caplan LR, Pessin MS, Kwan E. Mechanisms and clinical features of posterior border-zone infarcts. Neurology. 1999;53(6):1312–8.PubMedGoogle Scholar
  3. 3.
    Bogousslavsky J, Regli F, Maeder P, Meuli R, Nader J. The etiology of posterior circulation infarcts: a prospective study using magnetic resonance imaging and magnetic resonance angiography. Neurology. 1993;43(8):1528–33.PubMedGoogle Scholar
  4. 4.
    Bogousslavsky J. Posterior circulation strokes. In: Fisher M, editor. Stroke part II: clinical manifestations and pathogenesis. Amsterdam: Elsevier; 2009. p. 537–58.Google Scholar
  5. 5.
    Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 1991;337(8756):1521–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Bogousslavsky J, Van Melle G, Regli F. The Lausanne Stroke Registry: analysis of 1, 000 consecutive patients with first stroke. Stroke. 1988;19(9):1083–92.PubMedGoogle Scholar
  7. 7.
    Flaherty ML, Woo D, Haverbusch M, Sekar P, Khoury J, Sauerbeck L, et al. Racial variations in location and risk of intracerebral hemorrhage. Stroke. 2005;36(5):934–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Sutherland GR, Auer RN. Primary intracerebral hemorrhage. J Clin Neurosci. 2006;13(5):511–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44.PubMedCrossRefGoogle Scholar
  10. 10.
    de Oliveira E, Tedeschi H, Rhoton A, Peace D. Microsurgical anatomy of the posterior circulation: vertebral and basilar arteries. In: Carter L, Spetzler R, Hamilton M, editors. Neurovascular surgery. New York: McGraw-Hill Inc; 1995. p. 25–34.Google Scholar
  11. 11.
    Duvemoy H. Human brain stem vessels. Berlin: Springer; 1999.Google Scholar
  12. 12.
    Bogousslavsky J. Stroke syndromes. Second ed. Cambridge University Press; 2001. p. 770.Google Scholar
  13. 13.
    Foulkes MA, Wolf PA, Price TR, Mohr JP, Hier DB. The stroke data bank: design, methods, and baseline characteristics. Stroke. 1988;19(5):547–54.PubMedGoogle Scholar
  14. 14.
    Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S. Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS Study: a randomized controlled trial. Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke. JAMA. 1999;282(21):2019–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274(13):1017–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Mendelow AD, Unterberg A. Surgical treatment of intracerebral haemorrhage. Curr Opin Crit Care. 2007;13(2):169–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Clark WM, Albers GW, Madden KP, Hamilton S. The rtPA (alteplase) 0- to 6-hour acute stroke trial, part A (A0276g): results of a double-blind, placebo-controlled, multicenter study. Thromblytic therapy in acute ischemic stroke study investigators. Stroke. 2000;31(4):811–6.PubMedGoogle Scholar
  18. 18.
    Macleod M. Current issues in the treatment of acute posterior circulation stroke. CNS Drugs. 2006;20(8):611–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Macleod MR, Davis SM, Mitchell PJ, Gerraty RP, Fitt G, Hankey GJ, et al. Results of a multicentre, randomised controlled trial of intra-arterial urokinase in the treatment of acute posterior circulation ischaemic stroke. Cerebrovasc Dis. 2005;20(1):12–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Lekic T, Zhang JH. Posterior circulation stroke and animal models. Front Biosci. 2008;13:1827–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948;27(4):484–92.CrossRefGoogle Scholar
  23. 23.
    Eames PJ, Blake MJ, Dawson SL, Panerai RB, Potter JF. Dynamic cerebral autoregulation and beat to beat blood pressure control are impaired in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2002;72(4):467–72.PubMedGoogle Scholar
  24. 24.
    Dawson SL, Panerai RB, Potter JF. Serial changes in static and dynamic cerebral autoregulation after acute ischaemic stroke. Cerebrovasc Dis. 2003;16(1):69–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Schwarz S, Georgiadis D, Aschoff A, Schwab S. Effects of body position on intracranial pressure and cerebral perfusion in patients with large hemispheric stroke. Stroke. 2002;33(2):497–501.PubMedCrossRefGoogle Scholar
  26. 26.
    Dawson SL, Blake MJ, Panerai RB, Potter JF. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc Dis. 2000;10(2):126–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Dohmen C, Bosche B, Graf R, Reithmeier T, Ernestus RI, Brinker G, et al. Identification and clinical impact of impaired cerebrovascular autoregulation in patients with malignant middle cerebral artery infarction. Stroke. 2007;38(1):56–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Diedler J, Sykora M, Rupp A, Poli S, Karpel-Massler G, Sakowitz O, et al. Impaired cerebral vasomotor activity in spontaneous intracerebral hemorrhage. Stroke. 2009;40(3):815–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Ito H, Yokoyama I, Iida H, Kinoshita T, Hatazawa J, Shimosegawa E, et al. Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography. J Cereb Blood Flow Metab. 2000;20(8):1264–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Hida W, Kikuchi Y, Okabe S, Miki H, Kurosawa H, Shirato K. CO2 response for the brain stem artery blood flow velocity in man. Respir Physiol. 1996;104(1):71–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Reinhard M, Waldkircher Z, Timmer J, Weiller C, Hetzel A. Cerebellar autoregulation dynamics in humans. J Cereb Blood Flow Metab. 2008;28(9):1605–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Garbin L, Habetswallner F, Clivati A. Vascular reactivity in middle cerebral artery and basilar artery by transcranial Doppler in normals subjects during hypoxia. Ital J Neurol Sci. 1997;18(3):135–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Matsumoto S, Kuwabara S, Moritake K. Effects of cerebrovascular autoregulation and CO2 reactivity in experimental localized brainstem infarction. Neurol Res. 2000;22(2):197–203.PubMedGoogle Scholar
  34. 34.
    Merzeau S, Preckel MP, Fromy B, Leftheriotis G, Saumet JL. Differences between cerebral and cerebellar autoregulation during progressive hypotension in rats. Neurosci Lett. 2000;280(2):103–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Shiokawa O, Sadoshima S, Fujii K, Yao H, Fujishima M. Impairment of cerebellar blood flow autoregulation during cerebral ischemia in spontaneously hypertensive rats. Stroke. 1988;19(5):615–22.PubMedGoogle Scholar
  36. 36.
    Sato M, Pawlik G, Heiss WD. Comparative studies of regional CNS blood flow autoregulation and responses to CO2 in the cat. Effects of altering arterial blood pressure and PaCO2 on rCBF of cerebrum, cerebellum, and spinal cord. Stroke. 1984;15(1):91–7.PubMedGoogle Scholar
  37. 37.
    Fujiwara N, Higashi H, Shimoji K, Yoshimura M. Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol. 1987;384:131–51.PubMedGoogle Scholar
  38. 38.
    Back T. Pathophysiology of the ischemic penumbra—revision of a concept. Cell Mol Neurobiol. 1998;18(6):621–38.PubMedCrossRefGoogle Scholar
  39. 39.
    Facchinetti F, Dawson VL, Dawson TM. Free radicals as mediators of neuronal injury. Cell Mol Neurobiol. 1998;18(6):667–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Hata R, Matsumoto M, Hatakeyama T, Ohtsuki T, Handa N, Niinobe M, et al. Differential vulnerability in the hindbrain neurons and local cerebral blood flow during bilateral vertebral occlusion in gerbils. Neuroscience. 1993;56(2):423–39.PubMedCrossRefGoogle Scholar
  41. 41.
    Donnelly DF, Jiang C, Haddad GG. Comparative responses of brain stem and hippocampal neurons to O2 deprivation: in vitro intracellular studies. Am J Physiol. 1992;262(5 Pt 1):L549–54.PubMedGoogle Scholar
  42. 42.
    O'Reilly JP, Jiang C, Haddad GG. Major differences in response to graded hypoxia between hypoglossal and neocortical neurons. Brain Res. 1995;683(2):179–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Scorziello A, Pellegrini C, Forte L, Tortiglione A, Gioielli A, Iossa S, et al. Differential vulnerability of cortical and cerebellar neurons in primary culture to oxygen glucose deprivation followed by reoxygenation. J Neurosci Res. 2001;63(1):20–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Bristow MS, Simon JE, Brown RA, Eliasziw M, Hill MD, Coutts SB, et al. MR perfusion and diffusion in acute ischemic stroke: human gray and white matter have different thresholds for infarction. J Cereb Blood Flow Metab. 2005;25(10):1280–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37(5):1211–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu S, Levine SR, Winn HR. Targeting ischemic penumbra: part I—from pathophysiology to therapeutic strategy. J Exp Stroke Transl Med. 2010;3(1):47–55.PubMedGoogle Scholar
  47. 47.
    Moustafa RR, Baron JC. Pathophysiology of ischaemic stroke: insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol. 2008;153 Suppl 1:S44–54.PubMedGoogle Scholar
  48. 48.
    de Bray JM, Tranquart F, Saumet JL, Berson M, Pourcelot L. Cerebral vasodilation capacity: acute intracranial hypertension and supra- and infra-tentorial artery velocity recording. Clin Physiol. 1994;14(5):501–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Shiokawa O, Sadoshima S, Kusuda K, Nishimura Y, Ibayashi S, Fujishima M. Cerebral and cerebellar blood flow autoregulations in acutely induced cerebral ischemia in spontaneously hypertensive rats—transtentorial remote effect. Stroke. 1986;17(6):1309–13.PubMedGoogle Scholar
  50. 50.
    Shiokawa O, Sadoshima S, Okada Y, Nagao T, Fujishima M. Alpha- and beta-adrenergic receptors of noradrenergic innervation modulate the lower limits of cerebral and cerebellar blood flow autoregulation in spontaneously hypertensive rats. Gerontology. 1989;35(2–3):106–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Vavilala MS, Kincaid MS, Muangman SL, Suz P, Rozet I, Lam AM. Gender differences in cerebral blood flow velocity and autoregulation between the anterior and posterior circulations in healthy children. Pediatr Res. 2005;58(3):574–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Choy M, Ganesan V, Thomas DL, Thornton JS, Proctor E, King MD, et al. The chronic vascular and haemodynamic response after permanent bilateral common carotid occlusion in newborn and adult rats. J Cereb Blood Flow Metab. 2006;26(8):1066–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Tontisirin N, Muangman SL, Suz P, Pihoker C, Fisk D, Moore A, et al. Early childhood gender differences in anterior and posterior cerebral blood flow velocity and autoregulation. Pediatrics. 2007;119(3):e610–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Drummond JC, Oh YS, Cole DJ, Shapiro HM. Phenylephrine-induced hypertension reduces ischemia following middle cerebral artery occlusion in rats. Stroke. 1989;20(11):1538–44.PubMedGoogle Scholar
  55. 55.
    Cipolla MJ, McCall AL, Lessov N, Porter JM. Reperfusion decreases myogenic reactivity and alters middle cerebral artery function after focal cerebral ischemia in rats. Stroke. 1997;28(1):176–80.PubMedGoogle Scholar
  56. 56.
    Olah L, Franke C, Schwindt W, Hoehn M. CO(2) reactivity measured by perfusion MRI during transient focal cerebral ischemia in rats. Stroke. 2000;31(9):2236–44.PubMedGoogle Scholar
  57. 57.
    Flaherty ML, Haverbusch M, Sekar P, Kissela B, Kleindorfer D, Moomaw CJ, et al. Long-term mortality after intracerebral hemorrhage. Neurology. 2006;66(8):1182–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Balci K, Asil T, Kerimoglu M, Celik Y, Utku U. Clinical and neuroradiological predictors of mortality in patients with primary pontine hemorrhage. Clin Neurol Neurosurg. 2005;108(1):36–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Hill MD, Silver FL, Austin PC, Tu JV. Rate of stroke recurrence in patients with primary intracerebral hemorrhage. Stroke. 2000;31(1):123–7.PubMedGoogle Scholar
  60. 60.
    Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Tuhrim S. Intracerebral hemorrhage—improving outcome by reducing volume? N Engl J Med. 2008;358(20):2174–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Adeoye O, Woo D, Haverbusch M, Sekar P, Moomaw CJ, Broderick J, et al. Surgical management and case-fatality rates of intracerebral hemorrhage in 1988 and 2005. Neurosurgery. 2008;63(6):1113–7. discussion 7–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Morioka J, Fujii M, Kato S, Fujisawa H, Akimura T, Suzuki M, et al. Surgery for spontaneous intracerebral hemorrhage has greater remedial value than conservative therapy. Surg Neurol. 2006;65(1):67–72. discussion −3.PubMedCrossRefGoogle Scholar
  64. 64.
    Fewel ME, Thompson Jr BG, Hoff JT. Spontaneous intracerebral hemorrhage: a review. Neurosurg Focus. 2003;15(4):E1.PubMedGoogle Scholar
  65. 65.
    Chung Y, Haines SJ. Experimental brain stem surgery. Neurosurg Clin N Am. 1993;4(3):405–14.PubMedGoogle Scholar
  66. 66.
    Cossu M, Pau A, Siccardi D, Viale GL. Infratentorial ischaemia following experimental cerebellar haemorrhage in the rat. Acta Neurochir (Wien). 1994;131(1–2):146–50.CrossRefGoogle Scholar
  67. 67.
    Lekic T, Tang J, Zhang JH. A rat model of pontine hemorrhage. Acta Neurochir Suppl. 2008;105:135–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Lekic T, Tang J, Zhang JH. Rat model of intracerebellar hemorrhage. Acta Neurochir Suppl. 2008;105:131–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Goetz C. Vertebrobasilar stroke syndromes. Textbook of clinical neurology. 2nd ed. Philadelphia: Saunders; 2003. p. 415–6.Google Scholar
  70. 70.
    Worthley LI, Holt AW. Acute ischaemic stroke: part II. The vertebrobasilar circulation. Crit Care Resusc. 2000;2(2):140–5.PubMedGoogle Scholar
  71. 71.
    Guo J, Liao JJ, Preston JK, Batjer HH. A canine model of acute hindbrain ischemia and reperfusion. Neurosurgery. 1995;36(5):986–92. discussion 92–3.Google Scholar
  72. 72.
    Henninger N, Eberius KH, Sicard KM, Kollmar R, Sommer C, Schwab S, et al. A new model of thromboembolic stroke in the posterior circulation of the rat. J Neurosci Methods. 2006;30:156(1–2):1–9.Google Scholar
  73. 73.
    Kuwabara S, Uno J, Ishikawa S. A new model of brainstem ischemia in dogs. Stroke. 1988;19(3):365–71.Google Scholar
  74. 74.
    Nakahara T, Oki S, Muttaqin Z, Kuwabara S, Uozumi T. A new model of brainstem ischemia by embolization technique in cats. Neurosurg Rev. 1991;14(3):221–9.Google Scholar
  75. 75.
    Qureshi AI, Boulos AS, Hanel RA, Suri MF, Yahia AM, Alberico RA, et al. Randomized comparison of intra-arterial and intravenous thrombolysis in a canine model of acute basilar artery thrombosis. Neuroradiology. 2004;46(12):988–95.Google Scholar
  76. 76.
    Sekiguchi M, Takagi K, Takagi N, Date I, Takeo S, Tanaka O, et al. Time course and sequence of pathological changes in the cerebellum of microsphere-embolized rats. Exp Neurol. 2005;191(2):266–75.Google Scholar
  77. 77.
    Shiroyama Y, Nagamitsu T, Yamashita K, Yamashita T, Abiko S, Ito H. Changes in brain stem blood flow under various grades of brain stem ischemia. Tohoku J Exp Med. 1991;164(3):237–46.Google Scholar
  78. 78.
    Wojak JC, DeCrescito V, Young W. Basilar artery occlusion in rats. Stroke. 1991;22(2):247–52.Google Scholar
  79. 79.
    Yamada K, Hayakawa T, Yoshimine T, Ushio Y. A new model of transient hindbrain ischemia in gerbils. J Neurosurg. 1984;60(5):1054–8.Google Scholar
  80. 80.
    Yao H, Sadoshima S, Okada Y, Ibayashi S, Fujishima M. Hindbrain ischemia produced by bilateral vertebral artery occlusion and moderate hypotension in spontaneously hypertensive rats. Angiology. 1990;41(10):848–54.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tim Lekic
    • 1
  • Paul R. Krafft
    • 1
  • Jacqueline S. Coats
    • 2
    • 3
  • Andre Obenaus
    • 2
    • 3
  • Jiping Tang
    • 1
  • John H. Zhang
    • 1
    • 4
    • 5
  1. 1.Department of PhysiologyLoma Linda University School of MedicineLoma LindaUSA
  2. 2.Department of Radiology, School of MedicineLoma Linda UniversityLoma LindaUSA
  3. 3.Department of Radiation Medicine, School of MedicineLoma Linda UniversityLoma LindaUSA
  4. 4.Department of Anesthesiology, School of MedicineLoma Linda UniversityLoma LindaUSA
  5. 5.Department of Neurosurgery, School of MedicineLoma Linda UniversityLoma LindaUSA

Personalised recommendations