Translational Stroke Research

, Volume 2, Issue 3, pp 339–345 | Cite as

The Cardiovascular Triad of Dysfunctional Angiogenesis

  • Jun Zhang
  • Chris Carr
  • Ahmed Badr


Cerebral cavernous malformation is a clinically well-defined microvascular disorder predisposing to stroke; however, the major phenotype observed in zebrafish is the cardiac defect, specifically an enlarged heart. Less effort has been made to explore this phenotypic discrepancy between human and zebrafish. Given the fact that the gene products from Ccm1/Ccm2 are nearly identical between the two species, the common sense has dictated that the zebrafish animal model would provide a great opportunity to dissect the detailed molecular function of Ccm1/Ccm2 during angiogenesis. We recently reported on the cellular role of the Ccm1 gene in biochemical processes that permit proper angiogenic microvascular development in the zebrafish model. In the course of this experimentation, we encountered a vast amount of recent research on the relationship between dysfunctional angiogenesis and cardiovascular defects in zebrafish. Here we compile the findings of our research with the most recent contributions in this field and glean conclusions about the effect of defective angiogenesis on the developing cardiovascular system. Our conclusion also serves as a bridge for the phenotypic discrepancy between humans and animal models, which might provide some insights into future translational research on human stroke.


Cerebral cavernous malformation Stroke Microvascular malformation Cardiovascular triad Angiogenesis Cardiovascular defects Animal models Zebrafish 



This work was supported by NINDS/NIH (JZ) and TTUHSC (JZ).


  1. 1.
    Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009;5:659–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Clatterbuck RE, Eberhart CG, Crain BJ, Rigamonti D. Ultrastructural and immunocytochemical evidence that an incompetent blood–brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry. 2001;71:188–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Tu J, Stoodley MA, Morgan MK, Storer KP. Ultrastructural characteristics of hemorrhagic, nonhemorrhagic, and recurrent cavernous malformations. J Neurosurg. 2005;103:903–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Frischer JM, Pipp I, Stavrou I, Trattnig S, Hainfellner JA, Knosp E. Cerebral cavernous malformations: congruency of histopathological features with the current clinical definition. J Neurol Neurosurg Psychiatry. 2008;79:783–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang J, Clatterbuck RE, Rigamonti D, Chang DD, Dietz HC. Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet. 2001;10:2953–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA. Krit1 association with the integrin-binding protein icap-1: a new direction in the elucidation of cerebral cavernous malformations (ccm1) pathogenesis. Hum Mol Genet. 2002;11:389–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang J, Basu S, Rigamonti D, Dietz HC, Clatterbuck RE. Krit1 modulates beta1-integrin-mediated endothelial cell proliferation. Neurosurgery. 2008;63:571–8. discussion 578.PubMedCrossRefGoogle Scholar
  8. 8.
    Hilder TL, Malone MH, Bencharit S, Colicelli J, Haystead TA, Johnson GL, et al. Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res. 2007;6:4343–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, et al. CCM3 interacts with CCM2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics. 2007;8:249–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, et al. CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet. 2005;14:2521–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE. Interaction between krit1 and malcavernin: implications for the pathogenesis of cerebral cavernous malformations. Neurosurgery. 2007;60:353–9. discussion 359.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma X, Zhao H, Shan J, Long F, Chen Y, Zhang Y, et al. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. Mol Biol Cell. 2007;18:1965–78.PubMedCrossRefGoogle Scholar
  13. 13.
    Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE, et al. Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol. 2003;5:1104–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen JN, Haffter P, Odenthal J, Vogelsang E, Brand M, van Eeden FJ, et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development. 1996;123:293–302.PubMedGoogle Scholar
  15. 15.
    Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996;123:285–92.PubMedGoogle Scholar
  16. 16.
    Mably JD, Chuang LP, Serluca FC, Mohideen M-APK, Chen J-N, Fishman MC. Santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development. 2006;133:3139–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S. Ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet. 2008;17:2424–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY. Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development. 2004;131:1437–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Jin S-W, Herzog W, Santoro MM, Mitchell TS, Frantsve J, Jungblut B, et al. A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev Biol. 2007;307:29–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Kleaveland B, Zheng X, Liu JJ, Blum Y, Tung JJ, Zou Z, et al. Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med. 2009;15(2):169–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, et al. The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med. 2009;15(2):177–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Weinstein B. Vascular cell biology in vivo: a new piscine paradigm? Trends Cell Biol. 2002;12:439–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Weinstein BM. Plumbing the mysteries of vascular development using the zebrafish. Semin Cell Dev Biol. 2002;13:515–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Isogai S, Horiguchi M, Weinstein BM. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol. 2001;230:278–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res. 2011;48:130–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 assures microvascular integrity during angiogenesis. Transl Stroke Res. 2010;1:146–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Chi NC, Shaw RM, Jungblut B, Huisken J, Ferrer T, Arnaout R, et al. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol. 2008;6:e109.PubMedCrossRefGoogle Scholar
  28. 28.
    Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421:172–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet. 2002;31:106–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A. Loss of selenoprotein n function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res. 2007;313:156–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Gray C, Packham IM, Wurmser F, Eastley NC, Hellewell PG, Ingham PW, et al. Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol. 2007;27:2135–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Jia H, King IN, Chopra SS, Wan H, Ni TT, Jiang C, et al. Vertebrate heart growth is regulated by functional antagonism between Gridlock and Gata5. Proc Natl Acad Sci USA. 2007;104:14008–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Xiong JW, Yu Q, Zhang J, Mably JD. An acyltransferase controls the generation of hematopoietic and endothelial lineages in zebrafish. Circ Res. 2008;102:1057–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Cermenati S, Moleri S, Cimbro S, Corti P, Del Giacco L, Amodeo R, et al. Sox18 and Sox7 play redundant roles in vascular development. Blood. 2008;111:2657–66.PubMedCrossRefGoogle Scholar
  35. 35.
    Herpers R, van de Kamp E, Duckers HJ, Schulte-Merker S. Redundant roles for Sox7 and Sox18 in arteriovenous specification in zebrafish. Circ Res. 2008;102:12–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Pendeville H, Winandy M, Manfroid I, Nivelles O, Motte P, Pasque V, et al. Zebrafish Sox7 and Sox18 function together to control arterial-venous identity. Dev Biol. 2008;317:405–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang C, Basta T, Klymkowsky MW. Sox7 and sox18 are essential for cardiogenesis in Xenopus. Dev Dyn. 2005;234:878–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Bagatto B, Francl J, Liu B, Liu Q. Cadherin2 (N-cadherin) plays an essential role in zebrafish cardiovascular development. BMC Dev Biol. 2006;6:23.PubMedCrossRefGoogle Scholar
  39. 39.
    Bussmann J, Bakkers J, Schulte-Merker S. Early endocardial morphogenesis requires Scl/Tal1. PLoS Genet. 2007;3:e140.PubMedCrossRefGoogle Scholar
  40. 40.
    Habeck H, Odenthal J, Walderich B, Maischein H, Schulte-Merker S. Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis. Curr Biol. 2002;12:1405–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, et al. Sirt1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007;21:2644–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Wyatt L, Wadham C, Crocker LA, Lardelli M, Khew-Goodall Y. The protein tyrosine phosphatase Pez regulates TGFbeta, epithelial–mesenchymal transition, and organ development. J Cell Biol. 2007;178:1223–35.PubMedCrossRefGoogle Scholar
  43. 43.
    Santoro MM, Samuel T, Mitchell T, Reed JC, Stainier DY. Birc2 (clap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet. 2007;39:1397–402.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen E, Hermanson S, Ekker SC. Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood. 2004;103:1710–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Buchner DA, Su F, Yamaoka JS, Kamei M, Shavit JA, Barthel LK, et al. pak2a mutations cause cerebral hemorrhage in redhead zebrafish. Proc Natl Acad Sci USA. 2007;104:13996–4001.PubMedCrossRefGoogle Scholar
  46. 46.
    Parsons MJ, Pollard SM, Saude L, Feldman B, Coutinho P, Hirst EM, et al. Zebrafish mutants identify an essential role for laminins in notochord formation. Development. 2002;129:3137–46.PubMedGoogle Scholar
  47. 47.
    Pollard SM, Parsons MJ, Kamei M, Kettleborough RN, Thomas KA, Pham VN, et al. Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation. Dev Biol. 2006;289:64–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Minehata K, Kawahara A, Suzuki T. meis1 regulates the development of endothelial cells in zebrafish. Biochem Biophys Res Commun. 2008;374:647–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Bahary N, Goishi K, Stuckenholz C, Weber G, Leblanc J, Schafer CA, et al. Duplicate VegfA genes and orthologues of the KDR receptor tyrosine kinase family mediate vascular development in the zebrafish. Blood. 2007;110:3627–36.PubMedCrossRefGoogle Scholar
  50. 50.
    Fang PK, Solomon KR, Zhuang L, Qi M, McKee M, Freeman MR, et al. Caveolin-1alpha and -1beta perform nonredundant roles in early vertebrate development. Am J Pathol. 2006;169:2209–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Frank PG, Lisanti MP. Zebrafish as a novel model system to study the function of caveolae and caveolin-1 in organismal biology. Am J Pathol. 2006;169:1910–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Croushore JA, Blasiole B, Riddle RC, Thisse C, Thisse B, Canfield VA, et al. Ptena and ptenb genes play distinct roles in zebrafish embryogenesis. Dev Dyn. 2005;234:911–21.PubMedCrossRefGoogle Scholar
  53. 53.
    Zoeller JJ, McQuillan A, Whitelock J, Ho SY, Iozzo RV. A central function for perlecan in skeletal muscle and cardiovascular development. J Cell Biol. 2008;181:381–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Young SR, Mumaw C, Marrs JA, Skalnik DG. Antisense targeting of CXXC finger protein 1 inhibits genomic cytosine methylation and primitive hematopoiesis in zebrafish. J Biol Chem. 2006;281:37034–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Emoto Y, Wada H, Okamoto H, Kudo A, Imai Y. Retinoic acid-metabolizing enzyme Cyp26a1 is essential for determining territories of hindbrain and spinal cord in zebrafish. Dev Biol. 2005;278:415–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Cha YI, Kim SH, Solnica-Krezel L, Dubois RN. Cyclooxygenase-1 signaling is required for vascular tube formation during development. Dev Biol. 2005;282:274–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Kinna G, Kolle G, Carter A, Key B, Lieschke GJ, Perkins A, et al. Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development. Mech Dev. 2006;123:277–87.PubMedCrossRefGoogle Scholar
  58. 58.
    Hu G, Tang J, Zhang B, Lin Y, Hanai J, Galloway J, et al. A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro. J Cell Sci. 2006;119:4117–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Tran TC, Sneed B, Haider J, Blavo D, White A, Aiyejorun T, et al. Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res. 2007;67:11386–92.PubMedCrossRefGoogle Scholar
  60. 60.
    Siekmann AF, Lawson ND. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature. 2007;445:781–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Chittenden TW, Claes F, Lanahan AA, Autiero M, Palac RT, Tkachenko EV, et al. Selective regulation of arterial branching morphogenesis by synectin. Dev Cell. 2006;10:783–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, et al. The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature. 2004;428:754–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 2005;132:5199–209.PubMedCrossRefGoogle Scholar
  64. 64.
    Moser M, Yu Q, Bode C, Xiong JW, Patterson C. BMPER is a conserved regulator of hematopoietic and vascular development in zebrafish. J Mol Cell Cardiol. 2007;43:243–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Sehnert AJ, Stainier DY. A window to the heart: can zebrafish mutants help us understand heart disease in humans? Trends Genet. 2002;18:491–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Tidyman WE, Sehnert AJ, Huq A, Agard J, Deegan F, Stainier DY, et al. In vivo regulation of the chicken cardiac troponin T gene promoter in zebrafish embryos. Dev Dyn. 2003;227:484–96.PubMedCrossRefGoogle Scholar
  67. 67.
    Huang CC, Huang CW, Cheng YS, Yu J. Histamine metabolism influences blood vessel branching in zebrafish reg6 mutants. BMC Dev Biol. 2008;8:31.PubMedCrossRefGoogle Scholar
  68. 68.
    Gansner JM, Mendelsohn BA, Hultman KA, Johnson SL, Gitlin JD. Essential role of lysyl oxidases in notochord development. Dev Biol. 2007;307:202–13.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen E, Larson JD, Ekker SC. Functional analysis of zebrafish microfibril-associated glycoprotein-1 (Magp1) in vivo reveals roles for microfibrils in vascular development and function. Blood. 2006;107:4364–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen E, Stringer SE, Rusch MA, Selleck SB, Ekker SC. A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol. 2005;284:364–76.PubMedCrossRefGoogle Scholar
  71. 71.
    Pham VN, Lawson ND, Mugford JW, Dye L, Castranova D, Lo B, et al. Combinatorial function of ETS transcription factors in the developing vasculature. Dev Biol. 2007;303:772–83.PubMedCrossRefGoogle Scholar
  72. 72.
    Rodriguez F, Vacaru A, Overvoorde J, den Hertog J. The receptor protein-tyrosine phosphatase, Dep1, acts in arterial/venous cell fate decisions in zebrafish development. Dev Biol. 2008;324:122–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu L, Zhu S, Gong Z, Low BC. K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis. PLoS ONE. 2008;3:e2850.PubMedCrossRefGoogle Scholar
  74. 74.
    Bolcome 3rd RE, Sullivan SE, Zeller R, Barker AP, Collier RJ, Chan J. Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature. Proc Natl Acad Sci USA. 2008;105:2439–44.PubMedCrossRefGoogle Scholar
  75. 75.
    Malone MH, Sciaky N, Stalheim L, Hahn KM, Linney E, Johnson GL. Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol. 2007;7:40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.COE for Neurosciences, Department of AnesthesiologyTexas Tech University Health Science CenterEl PasoUSA
  2. 2.Emory University School of MedicineAtlantaUSA

Personalised recommendations