Advertisement

Translational Stroke Research

, Volume 2, Issue 2, pp 152–158 | Cite as

Cerebral Blood Flow Measurement in Neurosurgery

  • David Mette
  • Rhonda Strunk
  • Mario Zuccarello
Review

Abstract

Cerebral blood flow (CBF) is the key factor for identifying progressive hypoperfusion that is indicative of numerous pathological conditions. CBF measurement is beneficial for the management of cerebrovascular disease, head injury, and intracranial neoplasms. Of the various imaging modalities developed to assess CBF, the most notable are positron emission tomography, single photon emission computed tomography (CT), xenon CT, magnetic resonance imaging, and perfusion CT. The authors review the advancements in each modality, especially focusing on perfusion CT in neurosurgical applications and the value of acetazolamide challenge during scanning. Software developments have delivered important improvements in processing perfusion data by eliminating the necessity of manually drawing a region of interest (ROI) on each image. Rather, the software enables a digitized ROI template to be applied to each scan for better reproducibility and consistent results. Finally, in assessing CT perfusion for measuring cerebral blood flow in neurosurgical patients, we compare its benefits and limitations with other commonly used imaging methods.

Keywords

Cerebral blood flow Perfusion computed tomography Acetazolamide challenge Cerebral hemodynamics Brain perfusion imaging 

References

  1. 1.
    Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. Am J Neuroradiol. 2007;28(10):1850–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu TT, Brown GG. Measurement of cerebral perfusion with arterial spin labeling: part 1. Methods. Int Neuropsychol Soc. 2007;13(3):517–25.Google Scholar
  3. 3.
    Reichold J, Stampanoni M, Keller A, Buck A, Jenny P, Weber B. Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J Cereb Blood Flow Metab. 2009;29(8):1429–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Sturnegk P, Mellergard P, Yonas H, Theodorsson A, Hillman J. Potential use of quantitative bedside CBF monitoring (xe-CT) for decision making in neurosurgical intensive care. Br J Neurosurg. 2007;21(4):332–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Wiesmann M, Berg S, Bohner G, Klingebiel R, Schopf V, Stoeckelhuber BM, et al. Dose reduction in dynamic perfusion CT of the brain: effects of the scan frequency on measurements of cerebral blood flow, cerebral blood volume, and mean transit time. Eur Radiol. 2008;18(12):2967–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. Am J Neuroradiol. 2001;22(5):905–14.PubMedGoogle Scholar
  7. 7.
    Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–e99.PubMedCrossRefGoogle Scholar
  8. 8.
    Knutsson L, Borjesson S, Larsson EM, Risberg J, Gustafson L, Passant U, et al. Absolute quantification of cerebral blood flow in normal volunteers: correlation between xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imag. 2007;26(4):913–20.CrossRefGoogle Scholar
  9. 9.
    Gallagher CN, Hutchinson PJ, Pickard JD. Neuroimaging in trauma. Curr Opin Neurol. 2007;20(4):403–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Bisdas S, Nemitz O, Berding G, Weissenborn K, Ahl B, Becker H, et al. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease. Eur Radiol. 2006;16(10):2220–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Dittrich R, Kloska SP, Fischer T, Nam E, Ritter MA, Seidensticker P, et al. Accuracy of perfusion CT in predicting malignant middle cerebral artery brain infarction. J Neurol. 2008;255(6):896–902.PubMedCrossRefGoogle Scholar
  12. 12.
    Heiss WD, Sobesky J. Comparison of PET and DW/PW-MRI in acute ischemic stroke. Keio J Med. 2008;57(3):125–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Kang KH, Kim HS, Kim SY. Quantitative cerebrovascular reserve measured by acetazolamide-challenged dynamic CT perfusion in ischemic adult moyamoya disease: initial experience with angiographic correlation. Am J Neuroradiol. 2008;29(8):1487–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Coles JP. Imaging after brain injury. Br J Anaesth. 2007;99(1):49–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Kamath A, Smith WS, Powers WJ, Cianfoni A, Chien JD, Videen T, et al. Perfusion CT compared to H(2) (15)O/O (15)O PET in patients with chronic cervical carotid artery occlusion. Neuroradiol. 2008;50(9):745–51.CrossRefGoogle Scholar
  16. 16.
    Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, et al. Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. Am J Neuroradiol. 2003;24(3):419–26.PubMedGoogle Scholar
  17. 17.
    Olivot JM, Mlynash M, Zaharchuk G, Straka M, Bammer R, Schwartz N, et al. Perfusion MRI (tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurol. 2009;72(13):1140–5.CrossRefGoogle Scholar
  18. 18.
    Sase S, Honda M, Machida K, Seiki Y. Comparison of cerebral blood flow between perfusion computed tomography and xenon-enhanced computed tomography for normal subjects: territorial analysis. J Comput Assist Tomogr. 2005;29(2):270–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. Am J Neuroradiol. 2009;30(5):876–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Soustiel JF, Mahamid E, Goldsher D, Zaaroor M. Perfusion-CT for early assessment of traumatic cerebral contusions. Neuroradiol. 2008;50(2):189–96.CrossRefGoogle Scholar
  21. 21.
    Mullins ME. Stroke imaging with xenon-CT. Semin Ultrasound CT MR. 2006;27(3):219–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J Int Neuropsychol Soc. 2007;13(3):526–38.PubMedCrossRefGoogle Scholar
  23. 23.
    Koziak AM, Winter J, Lee TY, Thompson RT, St Lawrence KS. Validation study of a pulsed arterial spin labeling technique by comparison to perfusion computed tomography. Magn Reson Imaging. 2008;26(4):543–53.PubMedCrossRefGoogle Scholar
  24. 24.
    Jahng GH, Weiner MW, Schuff N. Improved arterial spin labeling method: applications for measurements of cerebral blood flow in human brain at high magnetic field MRI. Med Phys. 2007;34(11):4519–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Ziegelitz D, Starck G, Mikkelsen IK, Tullberg M, Edsbagge M, Wikkelso C, et al. Absolute quantification of cerebral blood flow in neurologically normal volunteers: dynamic-susceptibility contrast MRI-perfusion compared with computed tomography (CT)-perfusion. Magn Reson Med. 2009;62(1):56–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Sasaki M, Kudo K, Ogasawara K, Fujiwara S. Tracer delay-insensitive algorithm can improve reliability of CT perfusion imaging for cerebrovascular steno-occlusive disease: comparison with quantitative single-photon emission CT. Am J Neuroradiol. 2009;30(1):188–93.PubMedCrossRefGoogle Scholar
  27. 27.
    Zaro-Weber O, Moeller-Hartmann W, Heiss WD, Sobesky J. The performance of MRI-based cerebral blood flow measurements in acute and sub acute stroke compared with 15O-water positron emission tomography: identification of penumbral flow. Stroke. 2009;40(7):2413–21.PubMedCrossRefGoogle Scholar
  28. 28.
    van Laar PJ, van der Grond J, Hendrikse J. Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging. Radiol. 2008;246(2):354–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.University of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Department of NeurosurgeryUniversity of Cincinnati (UC) Neuroscience Institute, UC College of Medicine and Mayfield ClinicCincinnatiUSA
  3. 3.Department of RadiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  4. 4.c/o Editorial Office, Department of NeurosurgeryUniversity of CincinnatiCincinnatiUSA

Personalised recommendations