Translational Stroke Research

, Volume 2, Issue 1, pp 72–79 | Cite as

Subarachnoid Hemorrhage Induces Gliosis and Increased Expression of the Pro-inflammatory Cytokine High Mobility Group Box 1 Protein

  • Kentaro Murakami
  • Masayo Koide
  • Travis M. Dumont
  • Sheila R. Russell
  • Bruce I. Tranmer
  • George C. WellmanEmail author


Subarachnoid hemorrhage (SAH) following cerebral aneurysm rupture is associated with high rates of morbidity and mortality. Surviving SAH patients often suffer from neurological impairment, yet little is currently known regarding the influence of subarachnoid blood on brain parenchyma. The objective of the present study was to examine the impact of subarachnoid blood on glial cells using a rabbit SAH model. The astrocyte-specific proteins, glial fibrillary acidic protein (GFAP) and S100B, were up-regulated in brainstem from SAH model rabbits, consistent with the development of reactive astrogliosis. In addition to reactive astrogliosis, cytosolic expression of the pro-inflammatory cytokine, high-mobility group box 1 protein (HMGB1) was increased in brain from SAH animals. We found that greater than 90% of cells expressing cytosolic HMGB1 immunostained positively for Iba1, a specific marker for microglia and macrophages. Further, the number of Iba1-positive cells was similar in brain from control and SAH animals, suggesting the majority of these cells were likely resident microglial cells rather than infiltrating macrophages. These observations demonstrate SAH impacts brain parenchyma by activating astrocytes and microglia, triggering up-regulation of the pro-inflammatory cytokine HMGB1.


Subarachnoid hemorrhage Reactive astrogliosis Inflammation Microglia Vasospasm 



The authors would like to thank Bryce Bludevich, Kevin P. O’Connor, Matthew A. Nystoriak, Edward Zelazny, Todd Clason, Richard A. Hughes, and Keith K. Locke for their helpful comments and assistance with this study. This work was supported by the Totman Medical Research Trust Fund, the Peter Martin Brain Aneurysm Endowment, and NIH NHLBI (R01 HL078983 and P01 HL095488). Research on this project was conducted with the aid of the COBRE Imaging and Cell/Molecular core facilities, which are supported by Grant Number P20 RR016435 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH).


The authors declare no conflicts of interest.


  1. 1.
    Hop JW, Rinkel GJ, Algra A, van Gijn J. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke. 1997;28:660–4.PubMedGoogle Scholar
  2. 2.
    Hansen-Schwartz J, Vajkoczy P, Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci. 2007;28:252–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Sabri M, Kawashima A, Ai J, Macdonald RL. Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res. 2008;1238:163–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Vergouwen MD, Vermeulen M, Coert BA, Stroes ES, Roos YB. Microthrombosis after aneurysmal subarachnoid hemorrhage: an additional explanation for delayed cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:1761–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Wellman GC. Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage. Neurol Res. 2006;28:690–702.CrossRefPubMedGoogle Scholar
  7. 7.
    Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50:427–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85:1373–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Nylen K, Csajbok LZ, Ost M, Rashid A, Blennow K, Nellgard B, et al. Serum glial fibrillary acidic protein is related to focal brain injury and outcome after aneurysmal subarachnoid hemorrhage. Stroke. 2007;38:1489–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Petzold A, Keir G, Lim D, Smith M, Thompson EJ. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res Bull. 2003;61:281–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Petzold A, Keir G, Kerr M, Kay A, Kitchen N, Smith M, et al. Early identification of secondary brain damage in subarachnoid hemorrhage: a role for glial fibrillary acidic protein. J Neurotrauma. 2006;23:1179–84.CrossRefPubMedGoogle Scholar
  12. 12.
    Pereira AR, Sanchez-Pena P, Biondi A, Sourour N, Boch AL, Colonne C, et al. Predictors of 1-year outcome after coiling for poor-grade subarachnoid aneurysmal hemorrhage. Neurocrit Care. 2007;7:18–26.CrossRefPubMedGoogle Scholar
  13. 13.
    Yokota M, Peterson JW, Tani E, Yamaura I. The immunohistochemical distribution of protein kinase C isozymes is altered in the canine brain and basilar artery after subarachnoid hemorrhage. Neurosci Lett. 1994;180:171–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, et al. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery. 2003;53:123–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Prunell GF, Svendgaard NA, Alkass K, Mathiesen T. Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery. 2005;56:1082–92.PubMedGoogle Scholar
  16. 16.
    Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, et al. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.CrossRefPubMedGoogle Scholar
  17. 17.
    King MD, Laird MD, Ramesh SS, Youssef P, Shakir B, Vender JR, et al. Elucidating novel mechanisms of brain injury following subarachnoid hemorrhage: an emerging role for neuroproteomics. Neurosurg Focus. 2010;28:E10.CrossRefPubMedGoogle Scholar
  18. 18.
    Nakahara T, Tsuruta R, Kaneko T, Yamashita S, Fujita M, Kasaoka S, et al. High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care. 2009;11:362–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Hayakawa K, Mishima K, Nozako M, Hazekawa M, Mishima S, Fujioka M, et al. Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke. 2008;39:951–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim JB, Sig CJ, Yu YM, Nam K, Piao CS, Kim SW, et al. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 2006;26:6413–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Ishiguro M, Puryear CB, Bisson E, Saundry CM, Nathan DJ, Russell SR, et al. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol. 2002;283:H2217–25.PubMedGoogle Scholar
  22. 22.
    Ishiguro M, Wellman TL, Honda A, Russell SR, Tranmer BI, Wellman GC. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ Res. 2005;96:419–26.CrossRefPubMedGoogle Scholar
  23. 23.
    Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP—thirty-one years (1969–2000). Neurochem Res. 2000;25:1439–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Bianchi R, Adami C, Giambanco I, Donato R. S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol. 2007;81:108–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32:1208–15.PubMedGoogle Scholar
  26. 26.
    Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11:400–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem. 2000;275:40096–105.CrossRefPubMedGoogle Scholar
  28. 28.
    Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim JB, Lim CM, Yu YM, Lee JK. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res. 2008;86:1125–31.CrossRefPubMedGoogle Scholar
  30. 30.
    Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405:354–60.CrossRefPubMedGoogle Scholar
  31. 31.
    Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3:995–1001.CrossRefPubMedGoogle Scholar
  32. 32.
    Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, et al. The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci. 2008;28:12023–31.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kentaro Murakami
    • 1
  • Masayo Koide
    • 1
  • Travis M. Dumont
    • 2
  • Sheila R. Russell
    • 2
  • Bruce I. Tranmer
    • 2
  • George C. Wellman
    • 1
    • 2
    Email author
  1. 1.Department of PharmacologyUniversity of Vermont College of MedicineBurlingtonUSA
  2. 2.Department of Surgery, Division of NeurosurgeryUniversity of Vermont College of MedicineBurlingtonUSA

Personalised recommendations