Translational Stroke Research

, Volume 1, Issue 4, pp 276–286 | Cite as

Proteomic Identification of Novel Plasma Kallikrein Substrates in the Astrocyte Secretome



Plasma kallikrein (PK) is activated during hemorrhage and has been implicated in cerebral vascular permeability and edema. To further characterize the potential effects of PK on the brain that may follow cerebral vascular injury, we have utilized a proteomics approach to search for novel PK substrates in the astrocyte secretome. Extracellular proteins released by astrocytes are critical mediators of cerebral homeostasis, including roles in synapse function and vascular integrity. We identified 1,108 proteins in astrocyte condition medium and 295 of these were annotated as secreted proteins. The total abundance of nine proteins was changed after treatment with PK. Characterization of the secreted proteins revealed low molecular weight fragments for 59 proteins in conditioned media exposed to PK that were not observed in untreated controls. The most striking finding from this study was the appearance of fragmentation of 26 extracellular matrix-associated proteins including collagen isoforms 1–6 and11, nidogen-1 and -2, lysyl oxidase-like protein 1, and matrix metalloproteinase 19 in the presence of PK. We also demonstrated that PK induced the fragmentation of non-matrix proteins, including apolipoprotein E. This report further characterizes the astrocyte secretome and identifies novel potential targets of PK-induced proteolysis that may contribute to its effects on the brain following vascular injury.


Astrocyte Secretome Plasma kallikrein Matrix protein Proteolysis 



This work was supported in part by the US National Institutes of Health (grants EY19029 and DK36836) and the American Heart Association (0855905D).

Supplementary material

12975_2010_39_MOESM1_ESM.xls (1 mb)
Supplemental Table 1 The proteins identified in astrocyte culture medium (XLS 1,043 kb)
12975_2010_39_MOESM2_ESM.xls (318 kb)
Supplemental Table 2 The astrocyte secretome and its regulation by plasma kallikrein (XLS 318 kb)


  1. 1.
    Knight RA, Han Y, Nagaraja TN, Whitton P, Ding J, Chopp M, et al. Temporal MRI assessment of intracerebral hemorrhage in rats. Stroke. 2008;39:2596–602.CrossRefPubMedGoogle Scholar
  2. 2.
    Durukan A, Marinkovic I, Strbian D, Pitkonen M, Pedrono E, Soinne L, et al. Post-ischemic blood-brain barrier leakage in rats: one-week follow-up by MRI. Brain Res. 2009;1280:158–65.CrossRefPubMedGoogle Scholar
  3. 3.
    Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788:842–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Taheri S, Candelario-Jalil E, Estrada EY, Rosenberg GA. Spatiotemporal correlations between blood-brain barrier permeability and apparent diffusion coefficient in a rat model of ischemic stroke. PLoS ONE. 2009;4:e6597.CrossRefPubMedGoogle Scholar
  5. 5.
    Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Maurer MH. Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF). Mass Spectrom Rev. 2010;29:17–28.PubMedGoogle Scholar
  7. 7.
    Park KP, Rosell A, Foerch C, Xing C, Kim WJ, Lee S, et al. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke. 2009;40:2836–42.CrossRefPubMedGoogle Scholar
  8. 8.
    McColl BW, Rose N, Robson FH, Rothwell NJ, Lawrence CB. Increased brain microvascular mmp-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab. 2010;30:267–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Vivien D, Buisson A. Serine protease inhibitors: novel therapeutic targets for stroke? J Cereb Blood Flow Metab. 2000;20:755–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 2001;7:59–64.CrossRefPubMedGoogle Scholar
  11. 11.
    Echeverry R, Wu J, Haile WB, Guzman J, Yepes M. Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus. J Clin Invest. 2010;120:2194–205.CrossRefPubMedGoogle Scholar
  12. 12.
    Gao BB, Clermont A, Rook S, Fonda SJ, Srinivasan VJ, Wojtkowski M, et al. Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nat Med. 2007;13:181–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Storini C, Bergamaschini L, Gesuete R, Rossi E, Maiocchi D, De Simoni MG. Selective inhibition of plasma kallikrein protects brain from reperfusion injury. J Pharmacol Exp Ther. 2006;318:849–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Schmaier AH, McCrae KR. The plasma kallikrein-kinin system: its evolution from contact activation. J Thromb Haemost. 2007;5:2323–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Sainz IM, Pixley RA, Colman RW. Fifty years of research on the plasma kallikrein-kinin system: from protein structure and function to cell biology and in-vivo pathophysiology. Thromb Haemost. 2007;98:77–83.PubMedGoogle Scholar
  16. 16.
    Lund LR, Green KA, Stoop AA, Ploug M, Almholt K, Lilla J, et al. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice. EMBO J. 2006;25:2686–97.CrossRefPubMedGoogle Scholar
  17. 17.
    Selvarajan S, Lund LR, Takeuchi T, Craik CS, Werb Z. A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell Biol. 2001;3:267–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Abid K, Rochat B, Lassahn PG, Stocklin R, Michalet S, Brakch N, et al. Kinetic study of neuropeptide Y (NPY) proteolysis in blood and identification of NPY3–35: a new peptide generated by plasma kallikrein. J Biol Chem. 2009;284:24715–24.CrossRefPubMedGoogle Scholar
  19. 19.
    Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10:1369–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol. 2010;72:335–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Bauer H, Stelzhammer W, Fuchs R, Weiger TM, Danninger C, Probst G, et al. Astrocytes and neurons express the tight junction-specific protein occludin in vitro. Exp Cell Res. 1999;250:434–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Siddharthan V, Kim YV, Liu S, Kim KS. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.CrossRefPubMedGoogle Scholar
  23. 23.
    Gao BB, Stuart L, Feener EP. Label-free quantitative analysis of 1D-page LC/MS/MS proteome: application on angiotensin II stimulated smooth muscle cells secretome. Mol Cell Proteomics. 2008;7:2399–409.CrossRefPubMedGoogle Scholar
  24. 24.
    Camon E, Barrell D, Lee V, Dimmer E, Apweiler R. The gene ontology annotation (GOA) database—an integrated resource of GO annotations to the uniprot knowledgebase. In Silico Biol. 2004;4:5–6.PubMedGoogle Scholar
  25. 25.
    Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, et al. The gene ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32:D258–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300:1005–16.CrossRefPubMedGoogle Scholar
  27. 27.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–95.CrossRefPubMedGoogle Scholar
  28. 28.
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Lewin MF, Kaplan AP, Harpel PC. Studies of c1 inactivator-plasma kallikrein complexes in purified systems and in plasma. J Biol Chem. 1983;258:6415–21.PubMedGoogle Scholar
  30. 30.
    Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke. 2009;40:S8–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Nakagawa T, Schwartz JP. Gene expression patterns in in vivo normal adult astrocytes compared with cultured neonatal and normal adult astrocytes. Neurochem Int. 2004;45:203–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, et al. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29:3276–87.CrossRefPubMedGoogle Scholar
  33. 33.
    Lafon-Cazal M, Adjali O, Galeotti N, Poncet J, Jouin P, Homburger V, et al. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J Biol Chem. 2003;278:24438–48.CrossRefPubMedGoogle Scholar
  34. 34.
    Delcourt N, Jouin P, Poncet J, Demey E, Mauger E, Bockaert J, et al. Difference in mass analysis using labeled lysines (DIMAL-K): a new, efficient proteomic quantification method applied to the analysis of astrocytic secretomes. Mol Cell Proteomics. 2005;4:1085–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Keene SD, Greco TM, Parastatidis I, Lee SH, Hughes EG, Balice-Gordon RJ, et al. Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics. 2009;9:768–82.CrossRefPubMedGoogle Scholar
  36. 36.
    Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem. 2009;108:891–908.CrossRefPubMedGoogle Scholar
  37. 37.
    Dowell JA, Johnson JA, Li L. Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J Proteome Res. 2009;8:4135–43.CrossRefPubMedGoogle Scholar
  38. 38.
    Yan H, Zhou W, Wei L, Zhong F, Yang Y. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging. Biochem Biophys Res Commun. 2010;391:1187–91.CrossRefPubMedGoogle Scholar
  39. 39.
    Greco TM, Seeholzer SH, Mak A, Spruce L, Ischiropoulos H. Quantitative mass spectrometry-based proteomics reveals the dynamic range of primary mouse astrocyte protein secretion. J Proteome Res. 2010;9:2764–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39:1121–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Scholler K, Trinkl A, Klopotowski M, Thal SC, Plesnila N, Trabold R, et al. Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res. 2007;1142:237–46.CrossRefPubMedGoogle Scholar
  42. 42.
    Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med. 2006;354:1489–96.CrossRefPubMedGoogle Scholar
  43. 43.
    Vahedi K, Kubis N, Boukobza M, Arnoult M, Massin P, Tournier-Lasserve E, et al. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke. 2007;38:1461–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, et al. Mutations in COL4A1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308:1167–71.CrossRefPubMedGoogle Scholar
  45. 45.
    Beck IM, Ruckert R, Brandt K, Mueller MS, Sadowski T, Brauer R, et al. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses. PLoS ONE. 2008;3:e2343.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36:178–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein e type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L, Wyss-Coray T, et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci USA. 2003;100:10966–71.CrossRefPubMedGoogle Scholar
  49. 49.
    Tolar M, Keller JN, Chan S, Mattson MP, Marques MA, Crutcher KA. Truncated apolipoprotein E (ApoE) causes increased intracellular calcium and may mediate ApoE neurotoxicity. J Neurosci. 1999;19:7100–10.PubMedGoogle Scholar
  50. 50.
    Marques MA, Owens PA, Crutcher KA. Progress toward identification of protease activity involved in proteolysis of apolipoprotein E in human brain. J Mol Neurosci. 2004;24:73–80.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhou W, Scott SA, Shelton SB, Crutcher KA. Cathepsin D-mediated proteolysis of apolipoprotein E: possible role in Alzheimer’s disease. Neuroscience. 2006;143:689–701.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Research DivisionJoslin Diabetes Center, One Joslin Place, Boston, Harvard Medical SchoolBostonUSA

Personalised recommendations