Translational Stroke Research

, Volume 1, Issue 2, pp 146–153 | Cite as

Ccm1 Assures Microvascular Integrity During Angiogenesis

  • Huiling Liu
  • Daniele Rigamonti
  • Ahmed Badr
  • Jun Zhang
Original Article


Cerebral cavernous malformations (CCM) are characterized by abnormal dilated intracranial capillaries that predispose to hemorrhage. The development of some CCMs in humans has been attributed to mutations in the CCM1 genes. Currently, contradictory results have been generated regarding the vascular endothelial cell population changes in Ccm1 deficiency in zebrafish. We hypothesize that the inconsistent results simply reflect the spatial and temporal difference for the observed vascular endothelial cells during zebrafish embryonic development. Using high resolution images in vivo, we demonstrated that the loss of Ccm1 in zebrafish embryos leads to marked increases in apoptosis in vascular endothelium at the end stage of microvascular angiogenesis. In vivo zebrafish studies were further substantiated by in vitro findings in human endothelial cells that elucidated the biochemical pathways of CCM1 deficiency. We found that that loss of CCM1 in vitro promotes apoptosis through decreased activation of the integrin-linked kinase survival signaling pathway. In summary, Ccm1 has been identified as a key modulator in maintaining microvascular integrity during zebrafish embryonic angiogenesis.


Cerebral cavernous malformation Angiogenesis Intersegmental vessels Apoptosis Vascular endothelial cell 



We thank Chris Carr and Betty Chen at UMMC Neurosurgery, Hal Dietz, Richard Clatterbuck, and Sharmila Basu at Johns Hopkins University for their invaluable technical help and discussion during the experiments and in the preparation of this manuscript.


  1. 1.
    Zhang J, Clatterbuck RE, Rigamonti D, Chang DD, Dietz HC (2001) Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet 10:2953–2960PubMedCrossRefGoogle Scholar
  2. 2.
    Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA (2002) Krit1 association with the integrin-binding protein icap-1: a new direction in the elucidation of cerebral cavernous malformations (ccm1) pathogenesis. Hum Mol Genet 11:389–396PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang J, Basu S, Rigamonti D, Dietz HC, Clatterbuck RE (2008) Krit1 modulates beta1-integrin-mediated endothelial cell proliferation. Neurosurgery 63:571–578, discussion 578PubMedCrossRefGoogle Scholar
  4. 4.
    Hogan BM, Bussmann J, Wolburg H, Schulte-Merker S (2008) Ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Hum Mol Genet 17:2424–2432PubMedCrossRefGoogle Scholar
  5. 5.
    Jin S-W, Herzog W, Santoro MM, Mitchell TS, Frantsve J, Jungblut B, Beis D, Scott IC, D'Amico LA, Ober EA, Verkade H, Field HA, Chi NC, Wehman AM, Baier H, Stainier DYR (2007) A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev Biol 307:29–42PubMedCrossRefGoogle Scholar
  6. 6.
    Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY (2004) Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 131:1437–1448PubMedCrossRefGoogle Scholar
  7. 7.
    Mably JD, Chuang LP, Serluca FC, Mohideen M-APK, Chen J-N, Fishman MC (2006) Santa and valentine pattern concentric growth of cardiac myocardium in the zebrafish. Development 133:3139–3146PubMedCrossRefGoogle Scholar
  8. 8.
    Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM (2003) Angiogenic network formation in the developing vertebrate trunk. Development 130:5281–5290PubMedCrossRefGoogle Scholar
  9. 9.
    Takagi Y, Hattori I, Nozaki K, Ishikawa M, Hashimoto N (2000) DNA fragmentation in central nervous system vascular malformations. Acta Neurochir (Wien) 142:987–994CrossRefGoogle Scholar
  10. 10.
    Blum Y, Belting HG, Ellertsdottir E, Herwig L, Luders F, Affolter M (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316:312–322PubMedCrossRefGoogle Scholar
  11. 11.
    Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456PubMedCrossRefGoogle Scholar
  12. 12.
    Lang RA (1997) Apoptosis in mammalian eye development: lens morphogenesis, vascular regression and immune privilege. Cell Death Differ 4:12–20PubMedCrossRefGoogle Scholar
  13. 13.
    Fierlbeck W, Liu A, Coyle R, Ballermann BJ (2003) Endothelial cell apoptosis during glomerular capillary lumen formation in vivo. J Am Soc Nephrol 14:1349–1354PubMedCrossRefGoogle Scholar
  14. 14.
    Snider P, Conway SJ (2007) Developmental biology: the power of blood. Nature 450:180–181PubMedCrossRefGoogle Scholar
  15. 15.
    Wang L, Dutta SK, Kojima T, Xu X, Khosravi-Far R, Ekker SC, Mukhopadhyay D (2007) Neuropilin-1 modulates p53/caspases axis to promote endothelial cell survival. PLoS ONE 2:e1161PubMedCrossRefGoogle Scholar
  16. 16.
    Santoro MM, Samuel T, Mitchell T, Reed JC, Stainier DY (2007) Birc2 (ciap1) regulates endothelial cell integrity and blood vessel homeostasis. Nat Genet 39:1397–1402PubMedCrossRefGoogle Scholar
  17. 17.
    Croushore JA, Blasiole B, Riddle RC, Thisse C, Thisse B, Canfield VA, Robertson GP, Cheng KC, Levenson R (2005) Ptena and ptenb genes play distinct roles in zebrafish embryogenesis. Dev Dyn 234:911–921PubMedCrossRefGoogle Scholar
  18. 18.
    Rodriguez F, Vacaru A, Overvoorde J, den Hertog J (2008) The receptor protein-tyrosine phosphatase, dep1, acts in arterial/venous cell fate decisions in zebrafish development. Dev Biol 324:122–130PubMedCrossRefGoogle Scholar
  19. 19.
    Liu L, Zhu S, Gong Z, Low BC (2008) K-ras/pi3k-akt signaling is essential for zebrafish hematopoiesis and angiogenesis. PLoS ONE 3:e2850PubMedCrossRefGoogle Scholar
  20. 20.
    Gamble J, Meyer G, Noack L, Furze J, Matthias L, Kovach N, Harlant J, Vadas M (1999) B1 integrin activation inhibits in vitro tube formation: effects on cell migration, vacuole coalescence and lumen formation. Endothelium 7:23–34PubMedGoogle Scholar
  21. 21.
    Hilder TL, Malone MH, Bencharit S, Colicelli J, Haystead TA, Johnson GL, Wu CC (2007) Proteomic identification of the cerebral cavernous malformation signaling complex. J Proteome Res 6:4343–4355PubMedCrossRefGoogle Scholar
  22. 22.
    Voss K, Stahl S, Schleider E, Ullrich S, Nickel J, Mueller TD, Felbor U (2007) Ccm3 interacts with ccm2 indicating common pathogenesis for cerebral cavernous malformations. Neurogenetics 8:249–256PubMedCrossRefGoogle Scholar
  23. 23.
    Zawistowski JS, Stalheim L, Uhlik MT, Abell AN, Ancrile BB, Johnson GL, Marchuk DA (2005) Ccm1 and ccm2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14:2521–2531PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang J, Rigamonti D, Dietz HC, Clatterbuck RE (2007) Interaction between krit1 and malcavernin: implications for the pathogenesis of cerebral cavernous malformations. Neurosurgery 60:353–359, discussion 359PubMedCrossRefGoogle Scholar
  25. 25.
    Ma X, Zhao H, Shan J, Long F, Chen Y, Zhang Y, Han X, Ma D (2007) Pdcd10 interacts with ste20-related kinase mst4 to promote cell growth and transformation via modulation of the erk pathway. Mol Biol Cell 18:1965–1978PubMedCrossRefGoogle Scholar
  26. 26.
    Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE, Horne EA, Dell'Acqua ML, Johnson GL (2003) Rac-mekk3-mkk3 scaffolding for p38 mapk activation during hyperosmotic shock. Nat Cell Biol 5:1104–1110PubMedCrossRefGoogle Scholar
  27. 27.
    Wang YG, Liu HT, Zhang YM, Ma DL (1999) Cdna cloning and expression of an apoptosis-related gene, human tfar-15 gene. Science in China C Life Sci 29:331–336Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Huiling Liu
    • 1
  • Daniele Rigamonti
    • 2
  • Ahmed Badr
    • 3
  • Jun Zhang
    • 3
  1. 1.Department of NeurosurgeryUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Department of Neurological SurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.COE for Neurosciences, Departments of Anesthesiology, Biomedical Sciences, NeurosurgeryTexas Tech University Health Science CenterEl PasoUSA

Personalised recommendations