Cardiovascular Intervention and Therapeutics

, Volume 34, Issue 1, pp 85–96 | Cite as

Clinical use of physiological lesion assessment using pressure guidewires: an expert consensus document of the Japanese Association of Cardiovascular Intervention and Therapeutics

  • Yoshiaki Kawase
  • Hitoshi Matsuo
  • Takashi Akasaka
  • Yasutsugu Shiono
  • Nobuhiro Tanaka
  • Tetsuya Amano
  • Ken Kozuma
  • Masato Nakamura
  • Hiroyoshi Yokoi
  • Yoshio Kobayashi
  • Yuji Ikari
Expert Consensus Document


In this document, the background, concept, and current evidence are briefly summarized. The focus is on the clinical application of physiological lesion assessment from a practical standpoint for facilities that do not have ample experience. Finally, the characteristics of new resting indexes are summarized.


Coronary circulation Coronary artery disease Fractional flow reserve Instantaneous wave-free ratio 


Compliance with ethical standards

Conflict of interest

Yoshiaki Kawase received payment for lectures from Boston Scientific Japan, Hitoshi Matsuo received payment for lectures from Boston Scientific Japan, Phillips Japan, and Abott Vascular Japan, Takashi Akasaka received payment for lectures from St. Jude Medical, received grants/research support from St. Jude Medical, ACIST Medical Systems Japan, Abott vascular Japan, and Boston Scientific Japan, Yasutsugu Shiono received payment for lectures from Philips Japan, received grants/research support from St. Jude Medical, and ACIST Medical Systems Japan, Nobuhiro Tanaka received payment for lectures from Boston Scientific Japan and Abott Vascular Japan, Tetsuya Amano received grants/research support from Abott Vascular Japan and Boston Scientific Japan, Ken Kozuma received payment for lectures from Abott Vascular Japan, received grants/research support from Abott Vascular Japan, Masato Nakamura received payment for lectures from Abott vascular Japan, Phillips Japan, and Zeon Medical, Hiroyoshi Yokoi received payment for lectures from Boston Scientific Japan, Yoshio Kobayashi received research grant/research support from Abbott Vascular Japan, Yuji Ikari received grants/research support from Boston Scientific Japan and St. Jude Medical.


  1. 1.
    Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.CrossRefGoogle Scholar
  2. 2.
    Davies JE, Sen S, Dehbi HM, Al-Lamee R, Petraco R, Nijjer SS, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376:1824–34.CrossRefGoogle Scholar
  3. 3.
    Gotberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 2017;376:1813–23.CrossRefGoogle Scholar
  4. 4.
    Hoffman JI. Maximal coronary flow and the concept of coronary vascular reserve. Circulation. 1984;70:153–9.CrossRefGoogle Scholar
  5. 5.
    Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation. 1987;76:1183–9.CrossRefGoogle Scholar
  6. 6.
    Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92:3183–93.CrossRefGoogle Scholar
  7. 7.
    De Bruyne B, Paulus WJ, Pijls NH. Rationale and application of coronary transstenotic pressure gradient measurements. Cathet Cardiovasc Diagn. 1994;33:250–61.CrossRefGoogle Scholar
  8. 8.
    Berry C, van ‘t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, et al. VERIFY (VERification of Instantaneous Wave-Free Ratio and Fractional Flow Reserve for the Assessment of Coronary Artery Stenosis Severity in EverydaY Practice): a multicenter study in consecutive patients. J Am Coll Cardiol. 2013;61:1421–7.CrossRefGoogle Scholar
  9. 9.
    Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8.CrossRefGoogle Scholar
  10. 10.
    De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.CrossRefGoogle Scholar
  11. 11.
    Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64:1641–54.CrossRefGoogle Scholar
  12. 12.
    Lam MK, Sen H, Tandjung K, Lowik MM, Basalus MW, Mewes JC, et al. Clinical outcome of patients with implantation of second-generation drug-eluting stents in the right coronary ostium: insights from 2-year follow-up of the TWENTE trial. Catheter Cardiovasc Interv. 2015;85:524–31.CrossRefGoogle Scholar
  13. 13.
    Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.CrossRefGoogle Scholar
  14. 14.
    Bech GJ, De Bruyne B, Pijls NH, de Muinck ED, Hoorntje JC, Escaned J, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–34.CrossRefGoogle Scholar
  15. 15.
    Valgimigli M, Tebaldi M, Borghesi M, Vranckx P, Campo G, Tumscitz C, et al. Two-year outcomes after first- or second-generation drug-eluting or bare-metal stent implantation in all-comer patients undergoing percutaneous coronary intervention: a pre-specified analysis from the PRODIGY study (PROlonging Dual Antiplatelet Treatment After Grading stent-induced Intimal hyperplasia studY). JACC Cardiovasc Interv. 2014;7:20–8.CrossRefGoogle Scholar
  16. 16.
    Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49:2105–11.CrossRefGoogle Scholar
  17. 17.
    Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36:3182–8.CrossRefGoogle Scholar
  18. 18.
    Tanaka N, Nakamura M, Akasaka T, Kadota K, Uemura S, Amano T, et al. One- year outcome of fractional flow reserve-based coronary intervention in Japanese daily practice- CVIT-DEFER Registry. Circ J. 2017;81:1301–6.CrossRefGoogle Scholar
  19. 19.
    Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.CrossRefGoogle Scholar
  20. 20.
    Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2018. Scholar
  21. 21.
    Botman CJ, Schonberger J, Koolen S, Penn O, Botman H, Dib N, et al. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann Thorac Surg. 2007;83:2093–7.CrossRefGoogle Scholar
  22. 22.
    Fournier S, Toth GG, De Bruyne B, Johnson NP, Ciccarelli G, Xaplanteris P, et al. Six- year follow-up of fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circ Cardiovasc Interv. 2018;11:e006368.CrossRefGoogle Scholar
  23. 23.
    Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354–67.CrossRefGoogle Scholar
  24. 24.
    Toth GG, Johnson NP, Jeremias A, Pellicano M, Vranckx P, Fearon WF, et al. Standardization of fractional flow reserve measurements. J Am Coll Cardiol. 2016;68:742–53.CrossRefGoogle Scholar
  25. 25.
    Moriyama N, Yamanaka F, Shishido K, Tobita K, Yokota S, Hayashi T, et al. The COFFEE Trial (COmparison of Fractional Flow Reserve Measurements through 4 FrEnch versus 6 FrEnch Diagnostic Catheter). JACC Cardiovasc Interv. 2018;11:414–6.CrossRefGoogle Scholar
  26. 26.
    Inoue F, Hashimoto T, Fujimoto S, Uemura S, Kawamoto A, Dohi K. Estimation of coronary flow reserve by intracoronary administration of nicorandil: comparison with intracoronary administration of papaverine. Heart Vessels. 1998;13:229–36.CrossRefGoogle Scholar
  27. 27.
    Jang HJ, Koo BK, Lee HS, Park JB, Kim JH, Seo MK, et al. Safety and efficacy of a novel hyperaemic agent, intracoronary nicorandil, for invasive physiological assessments in the cardiac catheterization laboratory. Eur Heart J. 2013;34:2055–62.CrossRefGoogle Scholar
  28. 28.
    Wilson RF, White CW. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation. 1986;73:444–51.CrossRefGoogle Scholar
  29. 29.
    Nakayama M, Tanaka N, Sakoda K, Hokama Y, Hoshino K, Kimura Y, et al. Papaverine-induced polymorphic ventricular tachycardia during coronary flow reserve study of patients with moderate coronary artery disease. Circ J. 2015;79:530–6.CrossRefGoogle Scholar
  30. 30.
    De Bruyne B, Pijls NH, Barbato E, Bartunek J, Bech JW, Wijns W, et al. Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107:1877–83.CrossRefGoogle Scholar
  31. 31.
    Oi M, Toyofuku M, Matsumura Y, Motohashi Y, Takahashi K, Kawase Y, et al. Utility of nicorandil for the measurement of coronary fractional flow reserve. Cardiovasc Interv Ther. 2014;29:24–30.CrossRefGoogle Scholar
  32. 32.
    Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.CrossRefGoogle Scholar
  33. 33.
    Koo BK, Kang HJ, Youn TJ, Chae IH, Choi DJ, Kim HS, et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. J Am Coll Cardiol. 2005;46:633–7.CrossRefGoogle Scholar
  34. 34.
    Nakamura M, Yamagishi M, Ueno T, Hara K, Ishiwata S, Itoh T, et al. Prevalence of visual-functional mismatch regarding coronary artery stenosis in the CVIT-DEFER registry. Cardiovasc Interv Ther. 2014;29:300–8.CrossRefGoogle Scholar
  35. 35.
    Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120:1505–12.CrossRefGoogle Scholar
  36. 36.
    Lee JM, Koo BK, Shin ES, Nam CW, Doh JH, Hu X, et al. Clinical outcomes of deferred lesions with angiographically insignificant stenosis but low fractional flow reserve. J Am Heart Assoc. 2017. Scholar
  37. 37.
    Van Belle E, Gil R, Klauss V, Balghith M, Meuwissen M, Clerc J, et al. Impact of routine invasive physiology at time of angiography in patients with multivessel coronary artery disease on reclassification of revascularization strategy: results from the DEFINE REAL study. JACC Cardiovasc Interv. 2018;11:354–65.CrossRefGoogle Scholar
  38. 38.
    Yamanaka F, Shishido K, Ochiai T, Moriyama N, Yamazaki K, Sugitani A, et al. Instantaneous wave-free ratio for the assessment of intermediate coronary artery stenosis in patients with severe aortic valve stenosis: comparison with myocardial perfusion scintigraphy. JACC Cardiovasc Interv. 2018;11:2032–40.CrossRefGoogle Scholar
  39. 39.
    Cuculi F, De Maria GL, Meier P, Dall’Armellina E, de Caterina AR, Channon KM, et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1894–904.CrossRefGoogle Scholar
  40. 40.
    Ntalianis A, Sels JW, Davidavicius G, Tanaka N, Muller O, Trana C, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2010;3:1274–81.CrossRefGoogle Scholar
  41. 41.
    Lee JM, Kim HK, Lim KS, Park JK, Choi KH, Park J, et al. Influence of local myocardial damage on index of microcirculatory resistance and fractional flow reserve in target and nontarget vascular territories in a porcine microvascular injury model. JACC Cardiovasc Interv. 2018;11:717–24.CrossRefGoogle Scholar
  42. 42.
    De Bruyne B, Pijls NH, Bartunek J, Kulecki K, Bech JW, De Winter H, et al. Fractional flow reserve in patients with prior myocardial infarction. Circulation. 2001;104:157–62.CrossRefGoogle Scholar
  43. 43.
    Sels JW, Tonino PA, Siebert U, Fearon WF, Van’t Veer M, De Bruyne B, et al. Fractional flow reserve in unstable angina and non-ST-segment elevation myocardial infarction experience from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) study. JACC Cardiovasc Interv. 2011;4:1183–9.CrossRefGoogle Scholar
  44. 44.
    Nam J, Briggs A, Layland J, Oldroyd KG, Curzen N, Sood A, et al. Fractional flow reserve (FFR) versus angiography in guiding management to optimise outcomes in non-ST segment elevation myocardial infarction (FAMOUS-NSTEMI) developmental trial: cost-effectiveness using a mixed trial- and model-based methods. Cost Eff Resour Alloc. 2015;13:19.CrossRefGoogle Scholar
  45. 45.
    Hakeem A, Edupuganti MM, Almomani A, Pothineni NV, Payne J, Abualsuod AM, et al. Long- term prognosis of deferred acute coronary syndrome lesions based on nonischemic fractional flow reserve. J Am Coll Cardiol. 2016;68:1181–91.CrossRefGoogle Scholar
  46. 46.
    Toth GG, De Bruyne B, Rusinaru D, Di Gioia G, Bartunek J, Pellicano M, et al. Impact of right atrial pressure on fractional flow reserve measurements: comparison of fractional flow reserve and myocardial fractional flow reserve in 1,600 coronary stenoses. JACC Cardiovasc Interv. 2016;9:453–9.CrossRefGoogle Scholar
  47. 47.
    Matsumoto H, Nakatsuma K, Shimada T, Ushimaru S, Mikuri M, Yamazaki T, et al. Effect of caffeine on intravenous adenosine-induced hyperemia in fractional flow reserve measurement. J Invasive Cardiol. 2014;26:580–5.Google Scholar
  48. 48.
    Aminian A, Dolatabadi D, Lefebvre P, Khalil G, Zimmerman R, Michalakis G, et al. Importance of guiding catheter disengagement during measurement of fractional flow reserve in patients with an isolated proximal left anterior descending artery stenosis. Catheter Cardiovasc Interv. 2015;85:595–601.CrossRefGoogle Scholar
  49. 49.
    Pijls NH, Bruyne BD. Fractional flow reserve, coronary pressure wires, and drift. Circ J. 2016;80:1704–6.CrossRefGoogle Scholar
  50. 50.
    Wakasa N, Kuramochi T, Mihashi N, Terada N, Kanaji Y, Murai T, et al. Impact of pressure signal drift on fractional flow reserve-based decision-making for patients with intermediate coronary artery stenosis. Circ J. 2016;80:1812–9.CrossRefGoogle Scholar
  51. 51.
    Ahn JM, Park DW, Shin ES, Koo BK, Nam CW, Doh JH, et al. Fractional flow reserve and cardiac events in coronary artery disease: data from a prospective IRIS-FFR Registry (Interventional Cardiology Research Incooperation Society Fractional Flow Reserve). Circulation. 2017;135:2241–51.CrossRefGoogle Scholar
  52. 52.
    Kikuta Y, Cook CM, Sharp ASP, Salinas P, Kawase Y, Shiono Y, et al. Pre-angioplasty instantaneous wave-free ratio pullback predicts hemodynamic outcome in humans with coronary artery disease: primary results of the international multicenter iFR GRADIENT Registry. JACC Cardiovasc Interv. 2018;11:757–67.CrossRefGoogle Scholar
  53. 53.
    Kawase Y, Kawasaki M, Kikuchi J, Hirata T, Okamoto S, Tanigaki T, et al. Residual pressure gradient across the implanted stent: an important factor of post-PCI physiological results. J Cardiol. 2018;71:458–63.CrossRefGoogle Scholar
  54. 54.
    Balla C, Pavasini R, Ferrari R. Treatment of angina: where are we? Cardiology. 2018;140:52–67.CrossRefGoogle Scholar
  55. 55.
    Yamashita J, Tanaka N, Shindo N, Ogawa M, Kimura Y, Sakoda K, et al. Seven-year clinical outcomes of patients with moderate coronary artery stenosis after deferral of revascularization based on gray-zone fractional flow reserve. Cardiovasc Interv Ther. 2015;30:209–15.CrossRefGoogle Scholar
  56. 56.
    Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, et al. Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006;113:1768–78.CrossRefGoogle Scholar
  57. 57.
    Siebes M, Kolyva C, Verhoeff BJ, Piek JJ, Spaan JA. Potential and limitations of wave intensity analysis in coronary arteries. Med Biol Eng Comput. 2009;47:233–9.CrossRefGoogle Scholar
  58. 58.
    Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol. 2012;59:1392–402.CrossRefGoogle Scholar
  59. 59.
    Escaned J, Echavarria-Pinto M, Garcia-Garcia HM, van de Hoef TP, de Vries T, Kaul P, et al. Prospective assessment of the diagnostic accuracy of instantaneous wave-free ratio to assess coronary stenosis relevance: results of ADVISE II international, multicenter study (ADenosine Vasodilator Independent Stenosis Evaluation II). JACC Cardiovasc Interv. 2015;8:824–33.CrossRefGoogle Scholar
  60. 60.
    Petraco R, Al-Lamee R, Gotberg M, Sharp A, Hellig F, Nijjer SS, et al. Real-time use of instantaneous wave-free ratio: results of the ADVISE in-practice: an international, multicenter evaluation of instantaneous wave-free ratio in clinical practice. Am Heart J. 2014;168:739–48.CrossRefGoogle Scholar
  61. 61.
    Cook CM, Jeremias A, Petraco R, Sen S, Nijjer S, Shun-Shin MJ, et al. Fractional flow reserve/instantaneous wave-free ratio discordance in angiographically intermediate coronary stenoses: an analysis using doppler-derived coronary flow measurements. JACC Cardiovasc Interv. 2017;10:2514–24.CrossRefGoogle Scholar
  62. 62.
    Akasaka T, Yamamuro A, Kamiyama N, Koyama Y, Akiyama M, Watanabe N, et al. Assessment of coronary flow reserve by coronary pressure measurement: comparison with flow- or velocity-derived coronary flow reserve. J Am Coll Cardiol. 2003;41:1554–60.CrossRefGoogle Scholar
  63. 63.
    Lee JM, Shin ES, Nam CW, Doh JH, Hwang D, Park J, et al. Discrepancy between fractional flow reserve and instantaneous wave-free ratio: clinical and angiographic characteristics. Int J Cardiol. 2017;245:63–8.CrossRefGoogle Scholar
  64. 64.
    Lee JM, Shin ES, Nam CW, Doh JH, Hwang D, Park J, et al. Clinical outcomes according to fractional flow reserve or instantaneous wave-free ratio in deferred lesions. JACC Cardiovasc Interv. 2017;10:2502–10.CrossRefGoogle Scholar
  65. 65.
    Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87–94.CrossRefGoogle Scholar
  66. 66.
    Nijjer SS, Sen S, Petraco R, Mayet J, Francis DP, Davies JE. The Instantaneous wave-Free Ratio (iFR) pullback: a novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc Revasc Med. 2015;16:167–71.CrossRefGoogle Scholar
  67. 67.
    De Bruyne B, Pijls NH, Heyndrickx GR, Hodeige D, Kirkeeide R, Gould KL. Pressure-derived fractional flow reserve to assess serial epicardial stenoses: theoretical basis and animal validation. Circulation. 2000;101:1840–7.CrossRefGoogle Scholar
  68. 68.
    Kawase Y, Omori H, Kawasaki M, Tanigaki T, Hirata T, Okamoto S, et al. Postocclusional hyperemia for fractional flow reserve after percutaneous coronary intervention. Circ Cardiovasc Interv. 2017;10:e005674. Scholar
  69. 69.
    Van’t Veer M, Pijls NHJ, Hennigan B, Watkins S, Ali ZA, De Bruyne B, et al. Comparison of different diastolic resting indexes to iFR: are they all equal? J Am Coll Cardiol. 2017;70:3088–96.CrossRefGoogle Scholar
  70. 70.
    Svanerud J, Ahn JM, Jeremias A, van’t Veer M, Gore A, Maehara A, et al. Validation of a novel non-hyperaemic index of coronary artery stenosis severity: the Resting Full-cycle Ratio (VALIDATE RFR) study. EuroIntervention. 2018;14:806–14.CrossRefGoogle Scholar
  71. 71.
    Kojima S, Ishikawa S, Ohsawa K, Mori H. Determination of effective and safe dose for intracoronary administration of nicorandil in dogs. Cardiovasc Res. 1990;24:727–32.CrossRefGoogle Scholar
  72. 72.
    Miyazaki T, Moritani K, Miyoshi S, Asanagi M, Zhao LS, Mitamura H, et al. Nicorandil augments regional ischemia-induced monophasic action potential shortening and potassium accumulation without serious proarrhythmia. J Cardiovasc Pharmacol. 1995;26:949.CrossRefGoogle Scholar

Copyright information

© Japanese Association of Cardiovascular Intervention and Therapeutics 2018

Authors and Affiliations

  • Yoshiaki Kawase
    • 1
  • Hitoshi Matsuo
    • 1
  • Takashi Akasaka
    • 1
  • Yasutsugu Shiono
    • 1
  • Nobuhiro Tanaka
    • 1
  • Tetsuya Amano
    • 1
  • Ken Kozuma
    • 1
  • Masato Nakamura
    • 1
  • Hiroyoshi Yokoi
    • 1
  • Yoshio Kobayashi
    • 1
  • Yuji Ikari
    • 1
  1. 1.Gifu Heart CenterGifuJapan

Personalised recommendations