Skip to main content
Log in

Effect of low-density lipoprotein cholesterol on the geometry of coronary bifurcation lesions and clinical outcomes of coronary interventions in the J-REVERSE registry

  • Original Article
  • Published:
Cardiovascular Intervention and Therapeutics Aims and scope Submit manuscript

Abstract

We investigated the effect of low-density lipoprotein cholesterol (LDL-C) on the geometry of coronary bifurcation lesions. A total of 300 non-left main bifurcation lesions in 298 patients from J-REVERSE registry were classified according to statin treatment status at admission (NT, non-treated; ST, statin-treated) and were further subdivided based on LDL-C levels with a cutoff of 100 mg/dL (NT–high, n = 76 lesions; NT–low, n = 46; ST–high, n = 99 and ST–low, n = 79). In addition, a group with strict control of LDL-C (< 70 mg/dL) was defined (ST–SC; n = 19). The NT–high group had higher angled bifurcations compared to that in the NT–low group (59.1° ± 21.5° vs. 50.3° ± 18.6°, p = 0.02). In the multivariate analysis, NT–high group was an independent factor contributing on generation of higher angled (> 80°) lesion (odds ratio 3.77, 95% CI 1.05–13.5, p = 0.04). The NT–low group had more men (95.6 vs. 81.6%, p = 0.03), and greater plaque volume in the distal main vessel (7.1 ± 3.2 mm3/mm vs. 5.7 ± 2.7 mm3/mm, p = 0.02), compared to those in the NT–high group. LDL-C was more likely to remain high after statin treatment in younger patients (65.3 ± 3.6 years vs. 68.6 ± 8.4 years, p = 0.02) and current smokers (36.7 vs. 16.9%, p = 0.004). The ST–SC group had limited luminal volume expansion compared to that in the ST–high group (proximal: 6.7 ± 1.4 mm3/mm vs. 7.7 ± 2.3 mm3/mm, p = 0.04; distal: 5.3 ± 1.5 mm3/mm vs. 6.5 ± 1.9 mm3/mm, p = 0.04), regardless of similar plaque volumes. Elevated LDL-C is likely to promote the generation of higher angled bifurcation lesions and multiple risk factors lead to a more progressed bifurcation lesion even in patients with lower LDL-C levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chou R, Dana T, Blazina I, Daeges M, Jeanne TL. Statins for prevention of cardiovascular disease in adults: evidence report and systematic review for the us preventive services task force. JAMA. 2016;316:2008–24.

    Article  Google Scholar 

  2. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation. 2001;103:926–33.

    Article  CAS  Google Scholar 

  3. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, Crowe T, Howard G, Cooper CJ, Brodie B, Grines CL, DeMaria AN. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2014;291:1071–80.

    Article  Google Scholar 

  4. Chia S, Raffel OC, Takano M, Tearney GJ, Bouma BE, Jang IK. Association of statin therapy with reduced coronary plaque rupture: an optical coherence tomography study. Coron Artery Dis. 2008;19:237–42.

    Article  Google Scholar 

  5. Shin ES, Garcia-Garcia HM, Okamura T, Serruys PW. Effect of statins on coronary bifurcation atherosclerosis: an intravascular ultrasound virtual histology study. Int J Cardiovasc Imaging. 2012;28:1643–52.

    Article  Google Scholar 

  6. Räber L, Taniwaki M, Zaugg S, Kelbæk H, Roffi M, Holmvang L, Noble S, Pedrazzini G, Moschovitis A, Lüscher TF, Matter CM, Serruys PW, Jüni P, Garcia-Garcia HM, Windecker S, IBIS 4 (Integrated Biomarkers and Imaging Study-4) Trial Investigators. Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur Heart J. 2015;36:490–500.

    Article  Google Scholar 

  7. Puri R, Libby P, Nissen SE, Wolski K, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Raichlen JS, Uno K, Kataoka Y, Tuzcu EM, Nicholls SJ. Long-term effects of maximally intensive statin therapy on changes in coronary atheroma composition: insights from SATURN. Eur Heart J Cardiovasc Imaging. 2014;15:380–8.

    Article  Google Scholar 

  8. Libby P. How does lipid lowering prevent coronary events? New insights from human imaging trials. Eur Heart J. 2015;36:472–4.

    Article  CAS  Google Scholar 

  9. Tousoulis D, Psarros C, Demosthenous M, Patel R, Antoniades C, Stefanadis C. Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. J Am Coll Cardiol. 2014;63:2491–502.

    Article  CAS  Google Scholar 

  10. Nakazawa G, Otsuka F, Nakano M, Vorpahl M, Yazdani SK, Ladich E, Kolodgie FD, Finn AV, Virmani R. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314–22.

    Article  CAS  Google Scholar 

  11. Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol. 2016;13:210–20.

    Article  Google Scholar 

  12. Murasato Y, Kinoshita Y, Yamawaki M, Shinke T, Otake H, Takeda Y, Fujii K, Yamada S, Shimada Y, Yamashita T, Yumoto K, Investigators J-REVERSE. Comparison of Everolimus- versus Sirolimus-eluting stents in the provisional Bifurcation stenting guided by intravascular ultrasound: mid-term results of the J-REVERSE registry. Cardiovasc Interv Ther. 2016;31:1–12.

    Article  CAS  Google Scholar 

  13. Murasato Y, Kinoshita Y, Yamawaki M, Shinke T, Otake H, Takeda Y, Fujii K, Yamada S, Shimada Y, Yamashita T, Yumoto K, Fujino Y, J-REVERSE Investigators. Efficacy of kissing balloon inflation after provisional stenting in bifurcation lesions guided by intravascular ultrasound: short and midterm results of the J-REVERSE registry. EuroIntervention. 2016;11:e1237–48.

    Article  Google Scholar 

  14. Dzavik V, Kharbanda R, Ivanov J, Ing DJ, Bui S, Mackie K, Ramsamujh R, Barolet A, Schwartz L, Seidelin PH. Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle. Am Heart J. 2006;152(4):762–9.

    Article  Google Scholar 

  15. Kanda Y. Investigation of the freely-available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  Google Scholar 

  16. JCS Joint Working Group. Guidelines for secondary prevention of myocardial infarction (JCS 2011). Circ J. 2013;77:231–48.

    Article  Google Scholar 

  17. Martorell J, Santomá P, Kolandaivelu K, Kolachalama VB, Melgar-Lesmes P, Molins JJ, Garcia L, Edelman ER, Balcells M. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovasc Res. 2014;103:37–46.

    Article  CAS  Google Scholar 

  18. Markl M, Wegent F, Zech T, Bauer S, Strecker C, Schumacher M, Weiller C, Hennig J, Harloff A. In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circ Cardiovasc Imaging. 2010;3:647–55.

    Article  Google Scholar 

  19. Baharoglu MI, Lauric A, Safain MG, Hippelheuser J, Wu C, Malek AM. Widening and high inclination of the middle cerebral artery bifurcation are associated with presence of aneurysms. Stroke. 2014;45:2649–55.

    Article  Google Scholar 

  20. Meng W, Yu F, Chen H, Zhang J, Zhang E, Guo Y, Shi Y. Relationship between concentration difference of different density lipoproteins and shear stress in atherosclerosis. Comput Math Methods Med. 2012;2012:135256.

    Article  Google Scholar 

  21. Kenjereš S, de Loor A. Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation. J R Soc Interface. 2013;11:20130941.

    Article  Google Scholar 

  22. Abtahian F, Yonetsu T, Kato K, Jia H, Vergallo R, Tian J, Hu S, McNulty I, Lee H, Yu B, Jang IK. Comparison by optical coherence tomography of the frequency of lipid coronary plaques in current smokers, former smokers, and nonsmokers. Am J Cardiol. 2014;114:674–80.

    Article  Google Scholar 

  23. McDaniel MC, Galbraith EM, Jeroudi AM, Kashlan OR, Eshtehardi P, Suo J, Dhawan S, Voeltz M, Devireddy C, Oshinski J, Harrison DG, Giddens DP, Samady H. Localization of culprit lesions in coronary arteries of patients with ST-segment elevation myocardial infarctions: relation to bifurcations and curvatures. Am Heart J. 2011;161:508–15.

    Article  Google Scholar 

  24. Yamawaki M, Terashita D, Takahashi H, Shinke T, Fujii K, Shimada Y, Takeda Y, Yamada S, Kinoshita Y, Murasato Y, J-REVERSE Investigators. Impact of diabetes mellitus on intravascular ultrasound-guided provisional stenting in coronary bifurcation lesions J-REVERSE sub-study. J Interv Cardiol. 2016;29:576–87.

    Article  Google Scholar 

  25. Niemelä M, Kervinen K, Erglis A, Holm NR, Maeng M, Christiansen EH, Kumsars I, Jegere S, Dombrovskis A, Gunnes P, Stavnes S, Steigen TK, Trovik T, Eskola M, Vikman S, Romppanen H, Mäkikallio T, Hansen KN, Thayssen P, Aberge L, Jensen LO, Hervold A, Airaksinen J, Pietilä M, Frobert O, Kellerth T, Ravkilde J, Aarøe J, Jensen JS, Helqvist S, Sjögren I, James S, Miettinen H, Lassen JF, Thuesen L, Nordic-Baltic PCI Study Group. Randomized comparison of final kissing balloon dilatation versus no final kissing balloon dilatation in patients with coronary bifurcation lesions treated with main vessel stenting: the Nordic-Baltic Bifurcation Study III. Circulation. 2011;123:79–86.

    Article  Google Scholar 

  26. Kim YH, Lee JH, Roh JH, Ahn JM, Yoon SH, Park DW, Lee JY, Yun SC, Kang SJ, Lee SW, Lee CW, Seung KB, Shin WY, Lee NH, Lee BK, Lee SG, Nam CW, Yoon J, Yang JY, Hyon MS, Lee K, Jang JS, Kim HS, Park SW, Park SJ. Randomized comparisons between different stenting approaches for bifurcation coronary lesions with or without side branch stenosis. JACC Cardiovasc Interv. 2015;8:550–60.

    Article  Google Scholar 

  27. Gwon HC, Hahn JY, Koo BK, Song YB, Choi SH, Choi JH, Lee SH, Jeong MH, Kim HS, Seong IW, Yang JY, Rha SW, Jang Y, Yoon JH, Tahk SJ, Seung KB, Park SJ. Final kissing ballooning and long-term clinical outcomes in coronary bifurcation lesions treated with 1-stent technique: results from the COBIS registry. Heart. 2012;98:225–31.

    Article  Google Scholar 

Download references

Acknowledgements

J-REVERSE was supported by unrestricted research Grants from Abbott Vascular, Cordis Corporation, Orbus Neich, and Kaneka Corporation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yoshinobu Murasato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murasato, Y., Kinoshita, Y., Yamawaki, M. et al. Effect of low-density lipoprotein cholesterol on the geometry of coronary bifurcation lesions and clinical outcomes of coronary interventions in the J-REVERSE registry. Cardiovasc Interv and Ther 33, 360–371 (2018). https://doi.org/10.1007/s12928-017-0498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12928-017-0498-1

Keywords

Navigation