Skip to main content
Log in

Review on Biotechnological advances in Vigna radiata and their future prospects

  • Review Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Mungbean (Vigna radiata L. Wilczek) is an unique source of protein supplement with full of benefits as medicinal and climate friendly crop. Hence from past few decades, an increase has been observed in efforts of the improvement and expansion of cultivation of this pulse crop. Biotechnology in conjunction with conventional breeding techniques has a significant role in mungbean improvement programs. There is a necessity of major exploration in genetic resources, cytological, genetic, genomic, and tissue culture research to expand the vertical and horizontal base of this important crop to the level of other major legumes. Limited reports for development of transgenic Mungbean in comparison to other legume crops proves lack of an efficient plant genetic transformation protocol compatible with in vitro regeneration system. There is an utmost need to imply new technologies such as transgenic production, genome editing and conventional breeding along with embryo rescue techniques. Biotechnological approaches will speed up rather than replacement of conventional methods in mungbean breeding. The paper reviews in-depth studies on in vitro advancements of mungbean to understand the existing gaps for improvement in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

BA or BAP:

6-Benzylaminopurine

MS:

Murashige-Skoog

IAA:

3-Indoleacetic acid

IBA:

Indole-3-butyric acid

NAA:

Naphthaleneacetic acid

PC-L2:

Phillips and Collins

PEG:

Polyethylene Glycol

TDZ:

Thidiazuron

µM:

Micromolar

References

  • Adlinge PM, Samal KC, Kumara Swamy RV, Rout GR (2014) Rapid in vitro regeneration of black gram (Vigna mungo L. H.) var. Sarala, an important legume crop. Proceed National Acad Sci India 84(3):823–827

    Google Scholar 

  • Amutha S, Ganapathi A, Muruganantham M (2003) In vitro organogenesis and plant formation in Vigna radiata (L.) Wilczek. Plant Cell Tissue Organ Cult 72(2):203–207

    CAS  Google Scholar 

  • Amutha S, Muruganantham M, Ganapathi A (2006) Thidiazuron-induced high-frequency axillary and adventitious shoot regeneration in Vigna radiata (L.) Wilczek. Cell Develop Biol Plant 42(1):26–30

    CAS  Google Scholar 

  • Anandan R, Prakash M, Sunil Kumar B, Deenathayalan T (2019) In vitro transverse thin cell layer culture in mung bean Vigna radiata (L.) Wilczek. Indian J Experiment Biol 57:324–329

    CAS  Google Scholar 

  • Anwar N, Kikuchi A, Watanabe K (2010) Assessment of somaclonal variation for salinity tolerance in sweet potato regenerated plants. African J Biotechnol 9(43):7256–7265

    CAS  Google Scholar 

  • Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. Progress Botany 74:37–100

    CAS  Google Scholar 

  • Avenido RA, Hattori K (2001) Benzyladenine preconditioning in germinating mungbean seedling stimulates axillary buds in cotyledonary nodes resulting in multiple shoot regeneration. Breed Sci 51:137–142

    CAS  Google Scholar 

  • Avenido RA, Hautea DM (1990) In vitro organogenesis and flowering in mungbean (V. radiata L. Wilczek). Phillippine J Crop Sci 15:169–173

    Google Scholar 

  • Avenido R, Motoda J, Hattori K (2001a) Direct shoot regeneration from cotyledonary nodes as a marker for genomic groupings within the Asiatic Vigna (subgenus Ceratotropis Piper Verdc.) species. Plant Growth Regul 35(1):59–67

    CAS  Google Scholar 

  • Baloda A, Madanpotra S, Jaiwal PK (2017) Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine. J Plant Stress Physiol 3:5

    Google Scholar 

  • Betal S, Sen Raychaudhuri S (1999) Micropropagation of the endangered aromatic varieties of Vigna radiata (L.) Wilczek in West Bengal, India. Cell Develop Biol Plant 35(1):76–78

    CAS  Google Scholar 

  • Bhajan SK, Begum S, Islam MN, Hoque MI, Sarker RH (2019) In vitro regeneration and agrobacterium-mediated genetic transformation of local varieties of mungbean (Vigna radiata (L.) Wilczek). Plant Tissue Cult Biotechnol 29(1):81–97

    Google Scholar 

  • Bharathi A, Vijay Selvraj KS, Veerabadhiran P, Subba Lakshami B (2006) Crossability barriers in mungbean (Vigna radiata L. Wilczek): with its wild relatives. Indian J Crop Sci 1:120–124

    Google Scholar 

  • Bhargava SC, Smigocki AC (1994) Transformation of tropical grain legumes using particle bombardment. Curr Sci 66:439–442

    Google Scholar 

  • Chandra M, Pal A (1995) Differential response of the two cotyledons of Vigna radiata in vitro. Plant Cell Rep 15:248–253

    CAS  PubMed  Google Scholar 

  • Chen HK, Mok MC, Mok DWS (1990) Somatic embryogenesis and shoot organogenesis from interspecific hybrid embryos of Vigna glabrescens and V. radiata. Plant Cell Rep 9(2):77–79

    CAS  PubMed  Google Scholar 

  • Christou P (1994) The biotechnology of crop legumes. Euphytica 74:165–185

    Google Scholar 

  • Dahiya PK, Linnemann AR, Van Boekel MAJS, Khetarpaul N, Grewal RB, Nout MJR (2015) Mungbean: technological and nutritional potential. Crit Rev Food Sci Nutr 55:670–688

    CAS  PubMed  Google Scholar 

  • Davey MR, Rech EL, Mulligan BJ (1989) Direct DNA transfer to plant cells. Plant Mol Biol 13:273–285

    CAS  PubMed  Google Scholar 

  • Deo PC, Tyagi AP, Taylor M, Harding R, Becker D (2010) Factors affecting somatic embryogenesis and transformation in modern plant breeding. South Pacific J Natural Appl Sci 28: 2

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Google Scholar 

  • Dubey SC, Singh B (2013) Integrated management of major diseases of mungbean by seed treatment and foliar application of insecticide, fungicides and bioagent. Crop Prot 47:55–60

    CAS  Google Scholar 

  • Eapen S, George L (1990) Ontogeny of somatic embryos of Vigna mungo. Ann Bot 66:219–222

    Google Scholar 

  • Farmer Portal (2018) Pulse revolution from food to national security [Online]. Available https://farmer.gov.in/SucessReport2018-19.pdf.

  • Girija S, Ganapathi A, Ananthakrishnan G (2000) Somatic embryogenesis in Vigna radiata (L.) Wilczek. Indian J Exp Biol 38(12):1241–1244

    CAS  PubMed  Google Scholar 

  • Gulati A, Jaiwal PK (1990) Culture conditions affecting plant regeneration from cotyledon of mungbean (Vigna ratiata (L.) Wilczek). Plant Cell Tissue Organ Cult 23:1–7

    CAS  Google Scholar 

  • Gulati A, Jaiwal PK (1992) In vitro induction of multiple shoots and plant regeneration from shoot tips of mungbean (Vigna radiate (L.) Wilczek). Plant Cell Tissue Organ Cult 29:199–205

    CAS  Google Scholar 

  • Gulati A, Jaiwal PK (1994) Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep 13:523–527

    CAS  PubMed  Google Scholar 

  • Haberlandt G (1902) Cultural experiments with isolated plant cells. Sitzunsber Akad Vienna Math Nat Sci CI Dept J 111:69–92

    Google Scholar 

  • Himabindu Y, Reddy MC, Chandrasekhar T (2014) In vitro regeneration of green gram (Vigna radiata (L.) Wilczek) cultivar Vamban- 2 using cotyledonary nodes. CIBTech J Biotech 3:11–15

    Google Scholar 

  • Hoque MI, Zahan MM, Sarker RH (2007) In vitro plant Regeneration of Mungbean (Vigna radiata (L.) Wilckzek). Plant Tissue Cult Biotechnol 17(2):209–216

    Google Scholar 

  • Horacek J, Svabova L, Sarhanova P, Lebeda A (2013) Variability for resistance to Fusarium solani culture filtrate and fusaric acid among somaclones in pea. Biol Plant 57(1):133–138

    CAS  Google Scholar 

  • Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Shen Q (2019) Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutri MDPI AG. https://doi.org/10.3390/nu11061238

    Article  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    CAS  PubMed  Google Scholar 

  • Islam MN, Islam KT (2010) Agrobacterium-mediated genetic transformation of Mungbean (Vigna radiata (L.) Wilczek). Plant Tissue Cult Biotechnol 20(2):233–236

    Google Scholar 

  • Jain V, Babu VM (2013) Callus induction and shoot regeneration in VIGNA RADIATA. Intern J Sci Res Develop 1(7):1525–1531

    Google Scholar 

  • Jaiwal PK, Gulati A (1995) Current status and future strategies of in vitro culture techniques for genetic improvement of mungbean (Vigna radiata (L.) Wilczek). Euphytica 86(3):167–181

    Google Scholar 

  • Jaiwal PK, Sautter C, Potrykus I (1998) Agrobacterium rhizogenes mediated gene transfer in mung bean (Vigna radiata L. Wilezek). Current Sci 75:41–45

    CAS  Google Scholar 

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)—a recalcitrant grain legume. Plant Sci 161(2):239–247

    CAS  PubMed  Google Scholar 

  • Janaki R, Manoharan K (2012) Efficient multiple plantlet regeneration via micropropagation in Vigna radiata L. Wilczek. Intern J Advanc Biotechnol Res 3(4):835–840

    CAS  Google Scholar 

  • Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nature Commun 5:5443

    CAS  Google Scholar 

  • Kang YJ, Satyawan D, Shim S et al (2015) Draft genome sequence of adzuki bean Vigna angularis. Sci Rep. https://doi.org/10.1038/srep08069

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaviraj CP, Kiran G, Venugopal RB, Kavi Kishor PB, Rao S (2006) Somatic embryogenesis and plant regeneration from cotyledonary explants of green gram [Vigna radiata (L.) Wilezek]—a recalcitrant grain legume. Cell Develop Biol Plant 42(2):134–138

    CAS  Google Scholar 

  • Khatun MK, Haque MS, Islam S, Nasiruddin KM (2008) In vitro regeneration of mungbean (Vigna radiata L.) from different explants. Progress Agric 19(2):13–19

    Google Scholar 

  • Kumar P, Srivastava GC, Panwar JDS, Chandra R, Raghuveerp P (2003) Efficiency of thidiazuran on in vitro shoot regeneration from cotyledonary node explant in mungbean. Indian J Plant Physiol 8(4):398–401

    CAS  Google Scholar 

  • Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression of arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci 8:1896

    PubMed  PubMed Central  Google Scholar 

  • LAL SS (1985) A review of insect pests of mungbean and their control in India. Trop Pest Manag 31(2):105–114

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 4:197–214

    Google Scholar 

  • Mahalakshmi LS, Leela T, Manoj SK, Kiran BK, Naresh B, Devi P (2006) Enhanced genetic transformation efficiency of mungbean by use of primary leaf explants. Curr Sci 91(1):93–99

    CAS  Google Scholar 

  • Mahalaxmi V, Srivastava GC, Khetarpal S, Chandra R (2003) Enhanced plant regeneration from cotyledonary node explants of mungbean by amino acids. Indian J Plant Physiol 8(3):241–245

    CAS  Google Scholar 

  • Maheshwari S, Manoharan K (2019) Single cell induction from embryogenic and non-embryogenic callus of Vigna radiata (L.) Wilczek. Acta Hort 1241:307–311

    Google Scholar 

  • Maluventhen V, Arumugam M (2015) Efficient protocol for in vitro plantlet regeneration from leaf explants of green gram (Vigna radiata) L. WILCZEK. IJCIR 1(10):250–255

    Google Scholar 

  • Manman T, Qian L, Yanxia Z, Huanxiu L (2013) Effect of 6-BA on the plant regeneration via organogenesis from cotyledonary node of cowpea (Vigna unguiculata L. Walp). J Agric Sci 5(5).

  • Mathews H (1987) Morphogenetic responses from in vitro cultured seedling explants of mung bean (Vigna radiata L. Wilczek). Plant Cell Tissue Organ Cult 11(3):233–240

    Google Scholar 

  • Mathews VH, Rao PS (1984) In vitro production of multiple seedlings from single seeds of mung bean (Vigna radiata L. Wilczek). Zeitschrift Für Pflanzenphysiologie 113(4):325–329

    Google Scholar 

  • Mekala GK, Juturu VN, Mallikarjuna G, Kirti PB, Yadav SK (2016) Optimization of agrobacterium-mediated genetic transformation of shoot tip explants of green gram (Vigna radiata (L.) Wilczek). Plant Cell Tissue Organ Cult 127(3):651–663

    CAS  Google Scholar 

  • Mendoza AB, Futsuhara Y (1990) Varietal differences on plant regeneration by tissue culture in mungbean Vigna radiata (L.) WILCZEK. Jpn J Breed 40(4):457–467

    Google Scholar 

  • Mendoza AB, Hattori K, Futsuhara Y (1992) Shoot regeneration from the callus of immature primary leaves in mungbean (Vigna radiata (L.) Wilczek). Jpn J Breed 42:145–149

    Google Scholar 

  • Mroginski LA, Kartha KK (2011) Tissue culture of legumes for crop improvement. Plant Breed Rev 215–264.

  • Murashige T, Skoog S (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Google Scholar 

  • Nair RM, Schreinemachers P (2020) Global status and economic importance of mungbean. In: Schafleitner R, Lee Ha S (eds) Nair RM. The mungbean genome, Springer Nature, Switzerland AG, pp 1–8

    Google Scholar 

  • Nair RM, Schafleitner R, Kenyon L et al (2012) Genetic improvement of mungbean. SABRAO J Breed Genet 44:177–190

    Google Scholar 

  • Nair RM, Yang RY, Easdown WJ, Thavarajah D, ThavarajahHughesKeatinge PJd’AJDH (2013) Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J Sci Food Agric 93:1805–1813

    CAS  PubMed  Google Scholar 

  • Nair RM, Pandey AK, War AR et al (2019) Biotic and abiotic constraints in mungbean production—progress in genetic improvement. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01340

    Article  PubMed  PubMed Central  Google Scholar 

  • Nene YL (1986) Opportunities for research on diseases of pulse crops. Indian Phytopathol 39(3):333–342

    Google Scholar 

  • Pal M, Ghosh U, Chandra M, Pal K, Biwas BB (1991) Transformation and regeneration of mungbean (Vigna radiata). Indian J Biochem Biophys 28:428–435

    Google Scholar 

  • Palmer JL, Lawn RJ, Adkins SW (2002) An embryo-rescue protocol for Vigna interspecific hybrids. Australian J Botany 50(3):331–338

    Google Scholar 

  • Pandey P, Rathore M, Singh NP (2019) Advances in in vitro studies for genetic enhancement of blackgram: a review. Legume Res Intern J https://doi.org/10.18805/lr-4114

  • Patel MB, Bhardwaj R, Joshi A (1991) Organogenesis in Vigna radiata (L.) Wilczek. Indian J Exp Biol 29:619–622

    Google Scholar 

  • Patra AP, Samal KC, Rout GR, Sahu S, Narayan Jagadev P (2018) In vitro regeneration of recalcitrant green gram (Vigna radiata L. Wilczek) from immature cotyledons for genetic improvement. Intern J Current Microbiol Appl Sci 7(1):3072–3080

    Google Scholar 

  • Prasad MG, Sridevi V, Kumar MS (2014) Efficient plant regeneration of green gram (Vigna radiata (L.) Wilczek) via cotyledonary explants. Intern J Advanc Res 2:55–59

    Google Scholar 

  • Rana DS, Dass A, Rajanna GA, Kaur R (2016) Biotic and abiotic stress management in pulses. Indian J Agronomy 61:238–248

    Google Scholar 

  • Rao S, Patil P, Kaviraj CP (2005) Callus induction and organogenesis from various explants in Vigna radiata (L.) Wilczek. Indian J Biotechnol 4(4):556–560

    Google Scholar 

  • Sagare DB, Mohanty IC (2015) In vitro regeneration system in green gram (Vigna radiata L., Wilczek, cv. Sujata): a recalcitrant legume crop. Res J Agric Sci 6:64–67

    Google Scholar 

  • Sahoo DP, Kumar S, Mishra S, Kobayashi Y, Panda SK, Sahoo L (2016) Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Molecular Breed 36 (10)

  • Schafleitner R, Nair RM, Rathore A, et al. (2015) The AVRDC—The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genomics 16 (344)

  • Sen J, Guha-Mukherjee S (1998) In vitro induction of multiple shoots and plant regeneration in Vigna. Cell Develop Biol Plant 34(4):276–280

    CAS  Google Scholar 

  • Sengupta S, Das S, Ghosh S, Pal A (2011) Phenolic signals and their perception leads to in vitro shoot induction in Vigna radiata cotyledonary explants. Intern J Plant Devlop Biol 5(1):37–41

    Google Scholar 

  • Sindhujaa V, Gnanaraj M, Viji M, Karuppanapandian T, Manoharan K (2018) Induction of high frequency somatic embryogenesis and analysis of developmental stagewise expression of SERK1 gene during somatic embryogenesis in cultures of Vigna radiata (L.) R Wilczek. Indian J Exp Biol 56(3):180–193

    CAS  Google Scholar 

  • Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, Nayyar H (2017) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:1658

    PubMed  PubMed Central  Google Scholar 

  • Sita Mahalakshmi L, Leela T, Manoj SK, Kiran BK, Naresh B, Devi P (2006) Enhanced genetic transformation efficiency of mungbean by use of primary leaf explants. Curr Sci 91(1):93–99

    Google Scholar 

  • Sivakumar P, Gnanam R, Ramakrishnan K, Manickam A (2010) Somatic embryogenesis and regeneration of Vigna radiata. Biol Plant 54(2):245–251

    Google Scholar 

  • Somers DA, Samac DA, Olhoft M (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonia SR, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26(2):187–198

    CAS  PubMed  Google Scholar 

  • Suraninpong P, Chanprame S, Cho HJ, Widholm JM, Waranyuwat A (2004) Agrobacterium mediated transformation of mungbean (Vigna radiata (L.) Wilczek). Walailak J Sci Technol 1:38–48

    Google Scholar 

  • Thorpe TA (1993) In vitro Organogenesis and Somatic Embryogenesis: Physiological and Biochemical Aspects. In: Roubelakis-Angelakis K.A., Van Thanh K.T. (eds) Morphogenesis in Plants. NATO ASI Series (Series A: Life Sciences) 253. Springer, Boston, MA

  • Tivarekar S, Eapen S (2001) High frequency plant regeneration from immature cotyledons of mungbean. Plant Cell Tissue Organ Cult 66:227–230

    CAS  Google Scholar 

  • Tomooka N, Isemura T, Naito K, Kaga A, Vaughan D (2014) Vigna Species. In: Singh M, Bisht I, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 175–208

    Google Scholar 

  • Vats S, Solanki P, Alam A (2014) Efficient in vitro regeneration of Vigna radiata (L.) Wilczek. Researcher 6(1):12–15

    Google Scholar 

  • Vijayan S, Kirti PB (2012) Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogenn Rhizoctonia solani. Transgen Res 21(1):193–200

    CAS  Google Scholar 

  • Vijayan S, Beena MR, Kirti PB (2006) Simple and effective regeneration of mungbean (Vigna radiata (L.) Wilczek) using cotyledonary node explants. J Plant Biochem Biotechnol 15:131–134

    CAS  Google Scholar 

  • Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:4

    Google Scholar 

  • Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Krishna MG, Maheswari M, Vanaja M, Venkateswarlu B (2010b) High frequency induction of multiple shoots and plant regeneration from cotyledonary nodal explant of mungbean (Vigna radiata (L.) Wilczek). J Plant Biochem Biotechnol 19:267–270

    Google Scholar 

  • Yadav SK, Sreenu P, Maheswari M, Vanaja M, Venkateswarlu B (2010a) Efficient shoot regeneration from double cotyledonary node explants of green gram [Vigna radiata (L.) Wilczek]. Indian J Biotechnol 9(4):403–407

    CAS  Google Scholar 

  • Yadav SK, Katikala S, Yellisetty V, Kannepalle A, Narayana JL, Maddi V, Bharadwaja KP (2012) Optimization of agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiata. Springer Plus 1(1):1–8

    Google Scholar 

  • Zhu Y-S, Sun S, Richard FitzGerald (2018) Mungbean proteins and peptides: nutritional, functional and bioactive properties. Food and Nutri Res 62:1290

    Google Scholar 

Download references

Acknowledgements

We are thankful to Amity Institute of Biotechnology, Amity University, Noida for the invaluable support rendered throughout.

Funding

No funding was received for conducting this study. The authors have no relevant financial or non-financial interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Shukla.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A., Debnath, S. & Shukla, S. Review on Biotechnological advances in Vigna radiata and their future prospects. J. Crop Sci. Biotechnol. 24, 245–258 (2021). https://doi.org/10.1007/s12892-021-00086-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-021-00086-5

Keywords

Navigation