Advertisement

Journal of Crop Science and Biotechnology

, Volume 22, Issue 5, pp 465–474 | Cite as

Protein Profiling from Hormone-Induced Tetraploid Roots in Platycodon grandiflorum

  • Soo-Jeong Kwon
  • Swapan Kumar Roy
  • Jang-Hwan Yu
  • Seong-Woo Cho
  • Hag-Hyun Kim
  • Hee-Ock Boo
  • Sun-Hee WooEmail author
Research Article
  • 7 Downloads

Abstract

The root of Platycodon grandiflorum is used as traditional oriental medicine in Asian countries since ancient times to treat bronchitis, tonsillitis, sore throat, and other respiratory ailments. However, the mechanisms underlying the proteome characterization of this plant root remain unclear. Therefore, the present study was conducted to explore the differential expressions of proteins under liquid medium supplemented with different growth hormones. Two-dimensional gels stained with Coomassie Brilliant Blue (CBB), a total of 659 differentially expressed proteins were identified from the hormone-induced tetraploid roots of which 32 proteins spots (≥ 1.5-fold) were sorted for mass spectrometry analysis. However, the frequency distribution of identified proteins was carried out using the UniProt database. A gene ontology analysis showed that these proteins are associated with a wide range of cellular functions, from metabolism to regulatory processes. More specifically, the identified proteins from the explants were mainly associated with the glycolysis, metabolism, translation and transcription. Taken together, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in the tetraploid roots of this economically important medicinal plant, Platycodon grandiflorum.

Key words

Platycodon grandiflorum hormonal effects proteome profiling functional categorization metabolic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through Export Promotion Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(116121-03-3-SB010).

References

  1. Albrecht U, Bowman KD. 2012. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Sci. 185: 118–130PubMedCrossRefGoogle Scholar
  2. Choi CY, Kim JY, Kim YS, Chung YC, Hahm KS, Jeong HG. 2001. Augmentation of macrophage functions by an aqueous extract isolated from Platycodon grandiflorum. Cancer Lett. 166(1): 17–25PubMedCrossRefGoogle Scholar
  3. Choi CY, Kim JY, Kim YS, Chung YC, Seo JK, Jeong HG. 2001. Aqueous extract isolated from Platycodon grandiflorum elicits the release of nitric oxide and tumor necrosis factor-a from murine macrophages. Int. Immunopharmacol. 1(6): 1141–1151PubMedCrossRefGoogle Scholar
  4. Ding Y, Ma QH. 2004. Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochimie, 86(8): 509–518PubMedCrossRefGoogle Scholar
  5. Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7): 1085PubMedPubMedCentralCrossRefGoogle Scholar
  6. Guclu-Ustundag O, Mazza G. 2007. Saponins: properties, applications and processing Crit. Rev. Food Sci. Nutr. 47(3): 231–258PubMedCrossRefGoogle Scholar
  7. Han LK, Xu BJ, Kimura Y, Zheng YN, Okuda H. 2000. Platycodi radix affects lipid metabolism in mice with high fat diet-induced obesity. J. Nutr. 130(11): 2760–2764PubMedCrossRefGoogle Scholar
  8. Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R. 2008. Recent advances in plant cell wall proteomics. Proteomics. 8(4): 893–908PubMedCrossRefGoogle Scholar
  9. Kahn, RA, Fahrendorf T, Halkier BA, Moller BL. 1999. Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside Dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 363(1): 9–18Google Scholar
  10. Karni L, Aloni B. 2002. Fructokinase and hexokinase from pollen grains of bell pepper (Capsicum annuum L.): possible role in pollen germination under conditions of high temperature and CO2 enrichment. Ann. Bot. 90(5): 607–612PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kim HR, Kwon SJ, Roy SK, Cho SW, Kim HH, Cho KY, Boo HO, Woo SH. 2015. Proteome profiling unfurl differential expressed proteins from various explants in Platycodon Grandiflorum. Korean J. Crop Sci. 60(1): 97–106CrossRefGoogle Scholar
  12. Kim KS, Ezaki O, Ikemoto S, Itakura H. 1995. Effects of Platycodon grandiflorum feeding on serum and liver lipid concentrations in rats with diet-induced hyperlipidemia. J. Nutr. Sci. Vitaminol. 41(4): 485–491PubMedCrossRefGoogle Scholar
  13. Kim KS, Seo EK, Lee YC, Lee TK, Cho YW, Ezaki O, Kim CH. 2000. Effect of dietary Platycodon grandiflorum on the improvement of insulin resistance in obese Zucker rats. J. Nutr. Biochem. 11(9): 420–424PubMedCrossRefGoogle Scholar
  14. Lee EB. 1973. Pharmacological studies on Platycodon grandiflorum A. DC. IV. A comparison of experimental pharmacological effects of crude platycodin with clinical indications of platycodi radix (author's transl). Yakugaku zasshi: J. Pharm. Soc. Jpn. 93(9): 1188–1194CrossRefGoogle Scholar
  15. Lee KA, Cho TJ. 2003. Characterization of a salicylic acid-and pathogen-induced lipase-like gene in Chinese cabbage. BMB Rep. 36(5): 433–441CrossRefGoogle Scholar
  16. Lee KJ, Jeong HG. 2002. Protective effect of Platycodi radix on carbon tetrachloride-induced hepatotoxicity. Food. Chem. Toxicol. 40(4): 517–525PubMedCrossRefGoogle Scholar
  17. Li AX, Steffens JC. 2000. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc. Natl. Acad. Sci. U.S.A. 97(12): 6902–6907PubMedPubMedCentralCrossRefGoogle Scholar
  18. Li F, Shi J, Shen C, Chen G, Hu S, Chen Y. 2009. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol. Biol. 71(3): 251–63PubMedCrossRefGoogle Scholar
  19. Ling H, Zhao J, Zuo K, Qiu C, Yao H, Qin J, Sun X, Tang K. 2006. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. J. Biochem. Mol. Biol. 39(3)Google Scholar
  20. Menckhoff L, Mielke-Ehret N, Buck F, Vuletic M, Luthje S. 2013. Plasma membrane-associated malate dehydrogenase of maize (Zea mays L.) roots: Native versus recombinant protein. J. Proteom. 80: 66–77CrossRefGoogle Scholar
  21. Nyakudya E, Jeong JH, Lee NK, Jeong YS. 2014. Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev. Nutr. Food Sci. 19(2): 59PubMedPubMedCentralCrossRefGoogle Scholar
  22. O'Farrell PH. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250(10): 4007–4021PubMedPubMedCentralGoogle Scholar
  23. Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, Kang NY, Lee S, Cheong H, Park OK. 2005. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. The Plant Cell, 17(10): 2832–2847PubMedPubMedCentralCrossRefGoogle Scholar
  24. Park DI, Lee JH, Moon SK, Kim CH, Lee YT, Cheong J, Choi BT, Choi YH. 2005. Induction of apoptosis and inhibition of telomerase activity by aqueous extract from Platycodon grandiflorum in human lung carcinoma cells. Pharmacol. Res. 51(5): 437–443PubMedCrossRefGoogle Scholar
  25. Roy SK, Cho SW, Kwon SJ, Kamal AHM, Lee DG, Sarker K, Lee MS, Xin Z, Woo SH. 2017. Proteome characterization of copper stress responses in the roots of sorghum. BioMetals, 30(5): 765–785PubMedCrossRefGoogle Scholar
  26. Roy SK, Cho SW, Kwon SJ, Kamal AHM, Lee DG, Sarker K, Lee MS, Xin Z, Woo SH. 2017. Proteome characterization of copper stress responses in the roots of sorghum. BioMetals, 30(5): 765–785PubMedCrossRefGoogle Scholar
  27. Shirley AM, McMichael CM, Chapple C. 2001. The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose: choline sinapoyltransferase. Plant J. 28(1): 83–94PubMedCrossRefGoogle Scholar
  28. Sun H, Zhang A, Yan G, Han Y, Sun W, Ye Y, Wang X. 2013. Proteomics study on the hepatoprotective effects of traditional Chinese medicine formulae Yin-Chen-Hao-Tang by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J. Pharm. Biomed. Anal. 75: 173–179PubMedCrossRefGoogle Scholar
  29. Takagi K, Lee EB. 1972. Pharmacological studies on Platycodon grandiflorum A. DC. 3. Activities of crude platycodin on respiratory and circulatory systems and its other pharmacological activities. Yakugaku zasshi: J. Pharm. Soc. Jpn. 92(8): 969CrossRefGoogle Scholar
  30. Timperio AM, Egidi MG, Zolla L. 2008. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J. Proteom. 71(4): 391–411CrossRefGoogle Scholar
  31. Toorchi M, Yukawa K, Nouri MZ, Komatsu S. 2009. Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides, 30(12): 2108–2117PubMedCrossRefGoogle Scholar
  32. Werck-Reichhart D, Hehn A, Didierjean L. 2000. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5(3): 116–123PubMedCrossRefGoogle Scholar
  33. Williamson EM. 2003. Drug interactions between herbal and prescription medicines. Drug Saf. 26(15): 1075–1092PubMedCrossRefGoogle Scholar
  34. Yang ZB, Eticha D, Fuhrs H, Heintz D, Ayoub D, Van Dorsselaer A, Schlingmann B, Rao IM, Braun HP, Horst WJ. 2013. Proteomic and phosphoproteomic analysis of polyethylene glycol-induced osmotic stress in root tips of common bean (Phaseolus vulgaris L.). J. Exp. Bot. 64(18): 5569–5586PubMedPubMedCentralCrossRefGoogle Scholar
  35. Zhang L, Li X, Zheng W, Fu Z, Li W, Ma L, Li K, Sun L, Tian J. 2013. Proteomics analysis of UV-irradiated Lonicera japonica Thunb. with bioactive metabolites enhancement. Proteomics. 13(23-24): 3508–3522PubMedCrossRefGoogle Scholar
  36. Zhong Y, Cheng CZ, Jiang NH, Jiang B, Zhang YY, Wu B, Hu ML, Zeng JW, Yan HX, Yi GJ, Zhong GY. 2015. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PloS One. 10(6): p.e0126973Google Scholar
  37. Zhou S, Sauve R, Thannhauser TW. 2009. Proteome changes induced by aluminium stress in tomato roots. J. Exp. Bot. 60(6): 1849–1857PubMedCrossRefGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer 2019

Authors and Affiliations

  • Soo-Jeong Kwon
    • 2
  • Swapan Kumar Roy
    • 1
  • Jang-Hwan Yu
    • 1
  • Seong-Woo Cho
    • 3
  • Hag-Hyun Kim
    • 2
  • Hee-Ock Boo
    • 4
  • Sun-Hee Woo
    • 1
    Email author
  1. 1.Dept. of Crop ScienceChungbuk National UniversityCheong-juKorea
  2. 2.Dept. of Food Nutrition and CookeryWoosong CollegeDaejeonKorea
  3. 3.Department of Agronomy and Medicinal Plant ResourcesGyeongnam National University of Science and TechnologyJinjuKorea
  4. 4.AGROLEAD Co, Ltd.Jeju CityKorea

Personalised recommendations