Journal of Crop Science and Biotechnology

, Volume 21, Issue 1, pp 23–33 | Cite as

Role of Indigenous Mycorrhizal Species in Enhancing Physiological and Biochemical Status, Nutrient Acquisition and Yield Pattern of Groundnut (Arachis Hypogaea L.)

  • Prerna Balkrishna Pawar
  • Jose Savio Melo
  • Hemlata Madhav Kotkar
  • Mohan Vinayak Kulkarni
Research Article
  • 16 Downloads

Abstract

Arbuscular Mycorrhizal fungi (AMF) play an important and increasingly well-recognized role in agro ecosystems. Beneficial soil microorganisms like arbuscular mycorrhizal fungi and soil health are key factors for producing safe plants. Arbuscular mycorrhizal fungi form a symbiotic association with roots of plants and facilitate plant growth through enhancing uptake of several macro- and micro-nutrients of low mobility in soil, like phosphorus, zinc, copper, etc. In the present study, we investigated the effect of 10 different isolated mycorrhizal species viz. Glomus mosseae, Glomus clarum, Glomus fasciculatum, Glomus intraradices, Glomus ambisporum, Gigaspora gigantea, Acaulospora denticulata, Glomus globiferum, Gigaspora albida, and Glomus pansiholus on growth, yield, and essential nutrient content of groundnut (Arachis hypogeae L.). Plants inoculated with arbuscular mycorrhizal fungi showed significant increments in growth, yield, and nutrient uptake as compared to control (uninoculated) plants. Amongst all, plants inoculated with Glomus mosseae were more efficient in increasing growth parameters, enzymatic activities of nitrate reductase, and alkaline phosphatase as well as total yield as compared to other mycorrhizal inoculated plants. Overall, the study showed an additive effect of all mycorrhizal species on plant physiology. Thus, this study provides an important insight that arbuscular mycorrhizal fungi are most suitable for sustainable agriculture which will improve and help in increasing the growth as well as yield of groundnut.

Key words

Arbuscular mycorrhizal fungi alkaline phosphatase nitrate reductase and yield 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Fattah GM. 2001. Measurement of the viability of arbuscularmycorrhizal fungi using three different strains; relation to growth and metabolic activities of soybean plant. Microbiol. Res. 156: 359–367CrossRefPubMedGoogle Scholar
  2. Adesemoye AO, Torbert HA, Kloepper JW. 2008. Enhanced plant nutrient use-efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 54: 876–886CrossRefPubMedGoogle Scholar
  3. Ali AA Mustafa, Radziah Othman MA, Zainal Abidin, V Ganesan. 2010. Growth response of sweet corn (Zea mays) to Glomus mosseae 0ver different plant ages. Asian Journal of Plant Sciences. 9(6): 337–343.CrossRefGoogle Scholar
  4. Al-Garni SMS. 2006. Increasing NaCl-salt tolerance of a halophytic plant Phragmitesaustralis by mycorrhizal symbiosis. Am. Eurasian. J. Agric. Environ. Sci. 1: 119–126Google Scholar
  5. Al-Karaki GN. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci. Hort. 109: 1–7CrossRefGoogle Scholar
  6. Aron D. 1949. Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15CrossRefGoogle Scholar
  7. Azco'n R, Tobar RM. 1998. Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa: Effect of drought stress. Plant Sci. 133: 1–8CrossRefGoogle Scholar
  8. Bai Y, Souleimanov A, Smith DI. 2002. An inducible activator produced by Serratia proteamaclans strain and its soybean growth promoting activity under greenhouse conditions. J. Exp. Bot. 53: 149–502Google Scholar
  9. Baylis GTS. 1974. The magnolioidmycorrhiza and mycotrophy in root systems derived from it. In FE Sanders, B Mosse,PB Tinker, eds., Endomycorrhizae, Academic Press, New York, pp 373–789Google Scholar
  10. Bernhart DN, Wreath AR. 1995. Colorimetric determination of phosphorus by modified phosphomolybdate method. Anal. Chem. 27: 440–441CrossRefGoogle Scholar
  11. Bethlenfalvay GJ, Newton WE. 1991. Agro-ecological aspects of the mycorrhizal, nitrogen-fixing legume symbiosis. Beltsville Symp. Agric. Res. 14: 349–354Google Scholar
  12. Brady NC, Well RR. 2002. The nature and properties of soils. In D Fox, Pearson Education (Singapore) Pvt. Ltd., Indian branch, pp 960Google Scholar
  13. Bremner JM. 1960. Kjeldahl method for nitrogen determination. J. Agric. Sci. 55: 11–33CrossRefGoogle Scholar
  14. Campbell WH. 1988. Nitrate reductase and its role in nitrate assimilation in plants. Physiol. Plant. 74: 214–219CrossRefGoogle Scholar
  15. Datta P, Kulkarni M. 2014. Arbuscular mycorrhizal colonization enhances biochemical status in and mitigates adverse salt effects on two legumes. Not. Sci. Biol. 6: 381–393CrossRefGoogle Scholar
  16. Davies FT, Potter JR, Linderman RG. 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration -response in gas exchange and water relations. Physiol. Plant. 87: 45–53CrossRefGoogle Scholar
  17. Directorate of Groundnut Research. 2008. AICRP on Groundnut, Junagadh, IndiaGoogle Scholar
  18. Doley K, Jite PK. 2012. Response of groundnut (‘JL-24’) cultivar to mycorrhiza inoculation and phosphorous application. Not. Sci. Biol. 4: 118–125Google Scholar
  19. Dubey KK, Fulekar MH. 2011. Mycorrhizosphere development and management: The role of nutrients, microorganisms and bio-chemical activities. Agric. Biol. 2: 315–324Google Scholar
  20. Else KB, Bartlomiej P, Knut E. 2011. Role of Phosphatase Enzymes in Soil, In A Varma, ed, Phosphorus in action. Processes in soil phosphorus cycling. Vol. 26, Springer, Berlin, Germany, pp 215–243Google Scholar
  21. Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann. of Bot. 104: 1263–1280CrossRefGoogle Scholar
  22. Fageria NK, Ballgar VC, Johanes CA, 1997. Growth and Mineral Nutrient of Field Crop, 3 ed. Marcel Dekker Inc., New York, USA, pp 493–508.Google Scholar
  23. Fitter AH. 2005. Darkness visible: reflections on underground ecology. J. Ecol. 93: 231–24CrossRefGoogle Scholar
  24. Frankenberger WT, Jr., Arshad M. 1995. Phytohormones in Soil: Microbial production and function, Marcel-Dekker Inc., New York, USA, pp 227–281Google Scholar
  25. Gerdemann JW, Nicolson TH. 1963. Spores of mycorrhizal fungi isolated from soil by wet sieving and decanting. Trans Br Mycol Soc 46: 235–244.CrossRefGoogle Scholar
  26. Gianinazzi S, Gianinazzi-Pearson V, Tisserant B, Lemoine MC. 1992. Protein activities as potential markers of functional endomycorrhizas in plants, In DJ Read, DH Lewis, AH Fitter, IJ Alexander, eds., Mycorrhizas in ecosystems, CAB international, Wallingford, UK, pp 333–339Google Scholar
  27. Gunawardena SFB, Danso SK, Zapata F. 1992. Phosphorus requirements and nitrogen accumulation by three mungbean (Vigna radiate Welzek) cultivars. Plant Soil 174: 267–274CrossRefGoogle Scholar
  28. Harris D, Pacovsky RS, Paul EA. 1985. Carbon economy of soybean -Rhizobium -Glomus association. New Phytol. 101: 427–440CrossRefGoogle Scholar
  29. Hedge JE, Hofreiter BT. 1962. Carbohydrate chemistry, In RL Whistler, JN Be Miller, eds., Vol. 17, Academic Press, New YorkGoogle Scholar
  30. Hooker JE, Black KE. 1995. Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems. Crit. Rev. Biotechnol. 15: 201–212CrossRefGoogle Scholar
  31. Hseu ZY. 2004. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour, Technol. 5: 53–59CrossRefGoogle Scholar
  32. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils. 37: 1–16Google Scholar
  33. Kabir R, Yeasmin S, Islam AKMM, Sarkar MDAR. 2013. Effect of phosphorus, calcium and boron on the growth and yield of groundnut (Arachis hypogea L.). Inter. J. Bio-Sci. Bio-Technol. 5: 51–60Google Scholar
  34. Konlan S, Sarkodie-Addo J, Kombiok MJ, Asare E, Bawah I. 2013. Yield response of three groundnut (Arachis hypogaea L.) varieties intercropped with maize (Zea mays) in the guinea savanna zone of Ghana. J. Cereals Oilseeds 6: 76–84Google Scholar
  35. Labidi S, Ben JF, Tisserant B, Yousfi M, Sanaa M, Dalpé Y, Lounès-Hadi SA. 2015. Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25: 297–309CrossRefPubMedGoogle Scholar
  36. Lambert GH, Baker DE, Cole H. 1979. The role of mycorrhizae in the interaction of phosphorus with zinc, copper and other elements. Soil Sci. Soc. Am. J. 43: 976–980CrossRefGoogle Scholar
  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. J. Biol. Chem. 193: 265–275PubMedGoogle Scholar
  38. Luz WC. 2001. Evaluation of plant growth promoting and bioprotecting rhizobacteria on wheat crop. Fitopatol. Bras. 26: 597–600CrossRefGoogle Scholar
  39. Mustafa Ali AA, Othman R, Zainal Abidin MA, Ganesan V. 2010. Growth response of sweet corn (Zea mays) to Glomus mosseae inoculation over different plant ages. Asian. J. Plant Sci. 9: 337–343CrossRefGoogle Scholar
  40. Naab, JB, Prasad PVV, Boote KJ, Jones JW. 2009. Response of peanut to fungicide and phosphorus in on-station and on-farm tests in Ghana. Peanut Sci. 36: 157–164CrossRefGoogle Scholar
  41. Nicholas JC, Harper JE, Hageman RH. 1976. Nitrate reductase activity in soybean (Glycine max L.). Plant Physiol. 58: 731–735CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ortas I, Kaya Z, Cakmak I. 2001. Influence of arbuscular mycorrhizae inoculation on growth of maize and green pepper plants in phosphorus-and zinc-deficient soil, In WJ Horst et al., eds., Plant nutrition-food security and sustainability of agro ecosystems. Kluwer Acad. Publ. Dordrecht, Springer, Berlin, Heidelberg, pp 632–633Google Scholar
  43. Plenchette C, Duponnois R. 2005. Growth response of the saltbush Atriplex numularia L. to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices. J. Arid. Environ. 61: 535–540CrossRefGoogle Scholar
  44. Schenck NC, Perez Y. 1990. Manual for the Identification of VA Mycorrhizal Fungi, Vol. 3, Synergistic Publications, Gainesville, Florida, pp 0–286Google Scholar
  45. Singh AL. 1999. Mineral nutrition of groundnut. In A Hemantranjan, ed., Advances in Plant Physiology, Vol. 2, Scientific Publishers, Jodhpur, India, pp 161–200Google Scholar
  46. Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA. 1987. Characterization of osmotin a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol. 85: 529–536CrossRefPubMedPubMedCentralGoogle Scholar
  47. Smith SE, Read DJ. 2008. The symbionts forming arbuscular mycorrhizas, Mycorrhizal Symbiosis. Academic Press, Cambridge, Massachusetts, United States, pp 13–41CrossRefGoogle Scholar
  48. Sundaresan P, Ubalthoose-Raja N, Gunasekaran P, Lakshaman M. 1988. Studies on nitrate reduction by VAM fungal spores. Curr. Sci. 57: 84–85Google Scholar
  49. Verma JP, Yadav J, Tiwari KN, Singh V, 2010. Impact of plant growth promoting rhizobacteria on crop production. Int. J. Agric. Res. 5: 954–983CrossRefGoogle Scholar
  50. Zaidi A, Khan MS, 2007. Stimulatory effects of dual inoculation with phosphate solubilizing microorganisms and arbuscular mycorrhizal fungus on chickpea. Aust. J. Exp. Agric. 47: 1016–1022CrossRefGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Prerna Balkrishna Pawar
    • 1
  • Jose Savio Melo
    • 2
  • Hemlata Madhav Kotkar
    • 3
  • Mohan Vinayak Kulkarni
    • 1
  1. 1.Department of ChemistrySavitribai Phule Pune UniversityGaneshkhind, PuneIndia
  2. 2.Nuclear, Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of BotanySavitribai Phule Pune UniversityGaneshkhind, PuneIndia

Personalised recommendations