Journal of Crop Science and Biotechnology

, Volume 19, Issue 1, pp 117–124 | Cite as

Assessment of genetic diversity amongst Ugandan sesame (Sesamum indicum L.) landraces based on agromorphological traits and genetic markers

  • Eva M. Sehr
  • Walter Okello-Anyanga
  • Karin Hasel-Hohl
  • Agnes Burg
  • Stephan Gaubitzer
  • Patrick R. Rubaihayo
  • Patrick Okori
  • Johann Vollmann
  • Paul Gibson
  • Silvia Fluch
Research Article

Abstract

Sesame (Sesamum indicum L.) is one of the most important ancient oilseed crops grown throughout the tropical and subtropical regions of the world. In Uganda, most of the cultivated sesame varieties are local landraces which are frequently traded between farmers. Although these traditional landraces are an important source of genetic diversity, knowledge of their genetic diversity is still limited.

Agromorphological traits and a set of published and newly developed microsatellite markers were analyzed on a collection of 121 accessions of Ugandan sesame landraces. CpSSR analysis revealed four haplotypes, whereby haplotype B was present in 96% of the individuals. The analysis of nSSR markers from 6 non-coding regions revealed a mean PIC value of 0.56 whereas the PIC value of eight selected EST-derived SSRs was 0.26. Accession-wise, the expected heterozygosity (He) varied from 0 to 0.396. AMOVA revealed that the majority of the variance occurred among the individuals accounting for 75% of the total variation, only 6% was attributed to differences among the districts, pointing towards a high gene flow (Nm = 4.476). These results are supported by the PCoA analysis as well as the NJ tree both of which revealed no clustering of the accessions according to their geographic origin. Also the statistical analysis of 10 agromorphological traits indicated no clear pattern related to the geographic origin. Such a poor grouping, indicative of considerable gene flow across geographic domains, could be explained either by a high outcrossing rate, and/or through extensive seed trading.

Keywords

genetic diversity landraces molecular marker Sesamum indicum L. SSR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12892_2015_105_MOESM1_ESM.pdf (54 kb)
Supplementary material, approximately 56 KB.

References

  1. Agarwal M. Shrivastava N, Padh H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27: 617–631, doi:10.1007/s00299-008-0507-zCrossRefPubMedGoogle Scholar
  2. Anderson J, Churchill G, Autrique J, Tanksley S, Sorrells M. 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181–186CrossRefPubMedGoogle Scholar
  3. Arriel NHC, Di Mauro AO, Arriel EF, Unêda-Trevisoli SH, Costa MM, Bárbaro IM, Muniz FRS. 2007. Genetic divergence in sesame based on morphological and agronomic traits. Crop Breed. Appl. Biotechnol. 253–261Google Scholar
  4. Bedigian D, Harlan J. 1986. Evidence for cultivation of sesame in the ancient world. Econ. Bot. 40: 137–154, doi:10.1007/BF02859136CrossRefGoogle Scholar
  5. Bhattacharyya U, Pandey SK, Dasgupta T. 2014. Identification of EST-SSRs and FDM in sesame (Sesamum indicum L.) through data mining. Sch. J. Agric. Sci. 4: 60–69Google Scholar
  6. Bryan GJ, McNicoll J, Ramsay G, Meyaer RC, De Jong WS. 1999. Polymorpjic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor. Appl. Gent. 99: 859–867CrossRefGoogle Scholar
  7. Dixit A, Jin, M-H, Chung J-W, Yu J-W, Chung H-K, Ma KH, Park Y-J, Cho E-G. 2005. Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol. Ecol. Notes 5, 736–738, doi:10.1111/j.1471-8286.2005.01048.xCrossRefGoogle Scholar
  8. Fluch S, Burg A, Kopecky D, Homolka A, Spiess N, Vendramin G. 2011. Characterization of variable EST SSR markers for Norway spruce (Picea abies L.). BMC Res. Notes 4: 401CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gebremichael DE, Parzies HK. 2011. Genetic variability among landraces of sesame in Ethiopia. Afr. Crop Sci. J. 19Google Scholar
  10. Hayward A, Tollenaere R, Dalton-Morgan J, Batley J. 2015. Molecular Marker Applications in Plants, in: J Batley, Ed., Plant Genotyping, Methods in Molecular Biology. Springer New York, pp. 13–27Google Scholar
  11. IPGRI, NBPGR. 2004. Descriptors for Sesame (Sesamum spp.). International Plant Genetic Resources InstituteGoogle Scholar
  12. Kofler R, Schlötterer C, Lelley T. 2007. SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23, 1683–1685. doi:10.1093/bioinformatics/btm157CrossRefPubMedGoogle Scholar
  13. Kumar H, Kaur G, Banga S. 2012. Molecular characterization and assessment of genetic diversity in sesame (Sesamum indicum L.) Germplasm collection using ISSR markers. J. Crop Improv. 26, 540–557, doi:10.1080/15427528.2012.660563CrossRefGoogle Scholar
  14. Laurentin HE, Karlovsky P. 2006. Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genet. 7, 10–10, doi:10.1186/1471-2156-7-10CrossRefPubMedPubMedCentralGoogle Scholar
  15. Liu K, Muse SV. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128–2129, doi:10.1093/bioinformatics/bti282CrossRefPubMedGoogle Scholar
  16. Namiki M. 2007. Nutraceutical Functions of Sesame: A Review. Crit. Rev. Food Sci. Nutr. 47: 651–673, doi:10.1080/10408390600919114CrossRefPubMedGoogle Scholar
  17. Nyongesa B, Were B, Gudu S, Dangasuk O, Onkware A. 2013. Genetic diversity in cultivated sesame (Sesamum indicum L.) and related wild species in East Africa. J. Crop Sci. Biotechnol. 16: 9–15, doi:10.1007/s12892-012-0114-yCrossRefGoogle Scholar
  18. Parsaeian M, Mirlohi A, Saeidi G. 2011. Study of genetic variation in sesame (Sesamum indicum L.) using agromorphological traits and ISSR markers. Russ. J. Genet. 47: 314–321CrossRefGoogle Scholar
  19. Pathirana R. 1994. Natural cross-oollination in sesame (Sesamum indicum L.). Plant Breed. 112: 167–170, doi:10.1111/j.1439-0523.1994.tb00665.xCrossRefGoogle Scholar
  20. Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28: 2537–2539 doi:10.1093/bioinformatics/bts460PubMedGoogle Scholar
  21. R Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  22. Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat Biotech 18: 233–234, doi:10.1038/72708CrossRefGoogle Scholar
  23. Sharma SN, Kumar V, Mathur S. 2009. Comparative analysis of RAPD and ISSR markers for characterization of sesame (Sesamum indicum L.) genotypes. J. Plant Biochem. Biotechnol. 18: 37–43, doi:10.1007/BF03263293CrossRefGoogle Scholar
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis Version 6.0. Mol. Biol. Evol. 30: 2725–2729, doi:10.1093/molbev/mst197CrossRefPubMedPubMedCentralGoogle Scholar
  25. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40: e115–e115, doi:10.1093/nar/gks596CrossRefPubMedPubMedCentralGoogle Scholar
  26. van der Beek JG, Verkerk R, Zabel P, Lindhout P. 1992. Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor. Appl. Genet. 84: 106–112, doi:10.1007/BF00223988CrossRefPubMedGoogle Scholar
  27. Wang L, Han X, Zhang Y, Li D, Wei X, Ding X, Zhang X. 2014a. Deep resequencing reveals allelic variation in Sesamum indicum. BMC Plant Biol. 14: 225, doi:10.1186/s12870-014-0225-3CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wang L, Yu S, Tong C, Zhao Y, Liu, Y, et al. 2014b. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol. 15, R39CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wei X, Wang L, Zhang Y, Qi X, Wang X, Ding X, Zhang J, Zhang X. 2014. Development of Simple Sequence Repeat (SSR) Markers of sesame (Sesamum indicum) from a genome survey. Molecules 19: 5150–5162.CrossRefPubMedGoogle Scholar
  30. Weising K, Nybom H, Pfenninger M, Wolff K, Kahl G. 2005 DNA Fingerprinting in Plants: Principles, Methods, and Applications. CRC press.Google Scholar
  31. Wills D, Hester M, Liu A, Burke J. 2005. Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in Helianthus annuus. Theor. Appl. Genet. 110: 941–947, doi:10.1007/s00122-004-1914-3CrossRefPubMedGoogle Scholar
  32. Woldesenbet DT, Tesfaye K, Bekele E. 2015. Genetic diversity of sesame germplasm collection (Sesamum indicum L.): implication for conservation, improvement and use. Int. J. Biotechnol. Mol. Biol. Res. 6: 7–18CrossRefGoogle Scholar
  33. Yepuri V, Surapaneni M, Kola V, Vemireddy LR, Jyothi B, Dineshkumar V, Anuradha G, Siddiq EA. 2013. Assessment of genetic diversity in sesame (Sesamum indicum L.) genotypes, using EST-derived SSR markers. J. Crop Sci. Biotechnol. 16: 93–103. doi:10.1007/s12892-012-0116-9CrossRefGoogle Scholar
  34. Yermanos DM. 1980. Sesame, In: Hybridization of Crop Plants. American Society of Agronomy, Crop Science Society of America, Madison, WI, pp 549–563Google Scholar
  35. Zhang Y, Wang L, Xin H, Li D, Ma C, Ding X, Hong W, Zhang X. 2013. Construction of a high-density genetic map for sesame based on large-scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol. 13: 141–141, doi:10.1186/1471-2229-13-141CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang H, Wei L, Miao H, Zhang T, Wang C. 2012. Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics 13: 316–316 doi:10.1186/1471-2164-13-316CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Eva M. Sehr
    • 1
  • Walter Okello-Anyanga
    • 2
    • 3
  • Karin Hasel-Hohl
    • 1
  • Agnes Burg
    • 1
  • Stephan Gaubitzer
    • 1
  • Patrick R. Rubaihayo
    • 2
  • Patrick Okori
    • 2
  • Johann Vollmann
    • 4
  • Paul Gibson
    • 2
    • 5
  • Silvia Fluch
    • 1
  1. 1.AIT Austrian Institute of TechnologyHealth & Environment Dept.TullnAustria
  2. 2.Department of Agricultural Production, School of Agricultural SciencesMakerere University, KampalaKampalaUganda
  3. 3.National Semi-Arid Resources Research Institute (NaSARRI)Serere, P.O. SorotiUganda
  4. 4.Department of Crop SciencesUniv. of Natural Resources and Applied Life Sciences (BOKU)TullnAustria
  5. 5.Department of Plant, Soil and Agricultural SystemsIllinois UniversityCarbondaleUSA

Personalised recommendations